По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Перед тем как начать: почитайте про перераспределение между плоскостями управления в сетях. Сетевые инженеры обычно думают, что плоскость управления выполняет самые разные задачи, от вычисления кратчайшего пути через сеть до распределения политики, используемой для пересылки пакетов. Однако идея кратчайшего пути проникает в концепцию оптимального пути. Точно так же идея политики также проникает в концепцию оптимизации сетевых ресурсов. Хотя важны и политика, и кратчайший путь, ни один из них не лежит в основе того, что делает плоскость управления. Задача плоскости управления - сначала найти набор путей без петель через сеть. Оптимизация - хорошее дополнение, но оптимизация может быть "сделана" только в контексте поиска набора путей без петель. Таким образом, в этом разделе будет дан ответ на вопрос: как плоскость управления вычисляет пути без петель через сеть? Этот цикл статей начнется с изучения взаимосвязи между кратчайшим или наименьшим метрическим путем и безцикловыми путями. Следующая рассматриваемая тема - свободные от циклов альтернативные пути (LFA), которые не являются лучшими путями, но все же свободны от циклов. Такие пути полезны при проектировании плоскостей управления, которые быстро переключаются с наилучшего пути на альтернативный путь без петель в случае сбоев или изменений в топологии сети. Затем обсуждаются два конкретных механизма, используемых для поиска набора безцикловых путей. Какой путь свободен от петель? Связь между кратчайшим путем, обычно в терминах метрик, и свободными от циклов путями довольно проста: кратчайший путь всегда свободен от циклов. Причина этой связи может быть выражена наиболее просто в терминах геометрии (или, более конкретно, теории графов, которая является специализированной областью изучения в рамках дискретной математики). Рисунок 1 используется для объяснения этого. Какие есть пути из A, B, C и D к месту назначения? Из A: [B, H]; [C, E, H]; [D, F, G, H] Из B: [H]; [A, C, E, H]; [A, D, F, G, H] Из D: [F, G, H]; [A, C, E, H]; [A, B, H] Если каждое устройство в сети должно выбирать путь, который оно будет использовать к месту назначения независимо (без привязки на путь, выбранный любым другим устройством), можно сформировать постоянные петли. Например, A может выбрать путь [D, F, G, H], а D может выбрать путь [A, C, E, H]. Затем устройство A будет перенаправлять трафик к пункту назначения в D, а D затем перенаправит трафик к пункту назначения в A. Должно быть какое-то правило, отличное от выбора пути, реализованного алгоритмом, используемым для вычисления пути на каждом устройстве, например, выбрать самый короткий (или самый дешевый) путь. Но почему выбор кратчайшего (или самого дешевого) пути предотвращает возникновение петли? Рисунок 2 иллюстрирует это. На рисунке 2 предполагается, что A выбирает путь [D, F, G, H] к месту назначения, а D выбирает путь через A к месту назначения. Чего D не может знать, поскольку он вычисляет путь к месту назначения, не зная, что вычислил A, так это того, что A использует путь через D сам для достижения места назначения. Как может плоскость управления избежать такого цикла? Обратите внимание на то, что стоимость пути вдоль цикла всегда должна включать стоимость цикла, а также элемент пути без петель. В этом случае путь через A с точки зрения D должен включать стоимость от D до места назначения. Следовательно, стоимость через A, с точки зрения D, всегда будет больше, чем наименьшая доступная стоимость из D. Это приводит к следующему наблюдению: Путь с наименьшей стоимостью (или кратчайший) не может содержать путь, который проходит через вычислительный узел или, скорее, кратчайший путь всегда свободен от петель. В этом наблюдении есть два важных момента. Во-первых, это наблюдение не говорит о том, что пути с более высокой стоимостью являются определенно петлями, а только о том, что путь с наименьшей стоимостью не должен быть петлей. Можно расширить правило, чтобы обнаружить более широкий набор путей без петель, помимо пути с наименьшей стоимостью- они называются альтернативами без петель (Loop-Free Alternates). Во-вторых, это наблюдение справедливо, только если каждый узел в сети имеет одинаковое представление о топологии сети. Узлы могут иметь разные представления о топологии сети по ряду причин, например: Топология сети изменилась, и все узлы еще не были уведомлены об изменении; отсюда и микропетли. Некоторая информация о топологии сети была удалена из базы данных топологии путем суммирования или агрегирования. Метрики настроены так, что путь с наименьшей стоимостью несовместим с разных точек зрения. Плоскости управления, используемые в реальных сетях, тщательно продуманы, чтобы либо обойти, либо минимизировать влияние различных устройств, имеющих разные представления о топологии сети, что потенциально может привести к зацикливанию пути. Например: Плоскости управления тщательно настраиваются, чтобы минимизировать разницу во времени между изучением изменения топологии и изменением пересылки (или отбрасывать трафик во время изменений топологии, а не пересылать его). При обобщении топологии или агрегировании достижимости необходимо позаботиться о сохранении информации о затратах. "Лучшие общепринятые практики" проектирования сети поощряют использование симметричных метрик, а многие реализации затрудняют или делают невозможным настройку каналов с действительно опасными показателями, такими как нулевая стоимость канала. Часто требуется много работы, чтобы найти, обойти или предотвратить непреднамеренное нарушение правила кратчайшего пути в реальных протоколах плоскости управления. Почему бы не использовать список узлов? На этом этапе должен возникнуть очевидный вопрос: почему бы просто не использовать список узлов для поиска маршрутов без петель? Например, на рисунке 1, если A вычисляет путь через D, может ли D каким-то образом получить путь, вычисленный A, обнаружить, что сам D находится на пути, и, следовательно, не использовать путь через A? Первая проблема с этим механизмом заключается в процессе обнаружения. Как D должен узнать о пути, выбранном A, и A узнать о пути, выбранном D, не вызывая состояния гонки? Два устройства могут выбрать друг друга в качестве следующего перехода к пункту назначения в один и тот же момент, а затем информировать друг друга в один и тот же момент, в результате чего оба одновременно выбирают другой путь. Результатом может быть либо стабильный набор путей без петель, когда два устройства циклически выбирают друг друга и не имеют пути к месту назначения, либо состояние насыщения, при котором нет пути к месту назначения. Вторая проблема с этим механизмом - резюмирование - преднамеренное удаление информации о топологии сети для уменьшения количества состояний, переносимых на уровне управления. Плоскость управления будет иметь только метрики, с которыми можно работать, везде, где обобщается топология. Следовательно, лучше использовать правило, основанное на метриках или стоимости, а не на наборе узлов, через которые проходит путь. Обратите внимание, что обе эти проблемы решаемы. На самом деле существуют алгоритмы вектора пути, которые полагаются на список узлов для вычисления путей без петель через сеть. Хотя эти системы широко распространены, они часто считаются слишком сложными для развертывания во многих ситуациях, связанных с проектированием сетей. Следовательно, широко используются системы на основе метрик или стоимости. Теперь почитайте материал про построение деревьев в сетях
img
При развертывании IP-АТС одним из важнейших факторов является выбор телефонных аппаратов, поэтому в сегодняшней статье мы расскажем про 5 самых известных и надёжных брендах и моделях SIP- телефонов, которые не раз устанавливали в своих инсталляциях. Немного теории SIP-телефон – это телефон, который устанавливается в локальную сеть через порт RJ-45, вместо стандартного RJ-11. В отличие от аналоговых телефонов, которые используют выделенную телефонную сеть, SIP-телефоны используют компьютерную сеть для передачи голосовых данных. Если вы хотите использовать IP-телефоны, то для управления, координирования и взаимодействия с различными компонентами телефонии, в сети должна присутствовать IP-АТС. Большинство телефонов указанных ниже поддерживают SIP, но перед тем как заказывать один из них, рекомендуем ещё раз ознакомиться с их спецификацией. Кроме того, не все ниже упомянутые телефоны поставляются с блоком питания. Если вы собираетесь использовать POE выключатели/POE адаптеры, блок питания может не потребоваться. Если блок питания не входит в стандартную поставку, обычно его можно докупить отдельно Телефоны Cisco 1. Cisco SPA 504G 4-Line IP Phone Количество линий Дисплей Интерфейсы Кнопки Фичи 4 линии, 4 SIP аккаунта, поддержка SIP и SCCP Монохромный 128 × 64 ЖК-дисплей с подсветкой Встроенный 2-портовый коммутатор, Поддержка POE 4 программируемые кнопки Встроенная громкая связь, порт для гарнитуры 2. Cisco SPA 303 3-Line IP Phone Количество линий Дисплей Интерфейсы Кнопки Фичи 3 линии, поддержка SIP и SCCP Монохромный 128 × 64 ЖК-дисплей с подсветкой Встроенный 2-портовый коммутатор Стандартный 12 - кнопочный диалпад, кнопки для голосовой почты и удержания Встроенная громкая связь, порт для гарнитуры 3. Cisco SPA525G2 5-Line IP Phone Количество линий Дисплей Интерфейсы Кнопки Фичи 5 линий, поддержка SIP и SCCP Графический 3,2-дюймовый цветной 320 х 240 дисплей Встроенный 2-портовый коммутатор c поддержкой POE, поддержка соединения по WiFi 5 программируемых линейных кнопок Интеграция с Bluetooth, Встроенная громкая связь, порт для гарнитуры, USB порт Телефоны Polycom 1. Soundpoint IP 335 Количество линий Дисплей Интерфейсы Кнопки Фичи 3 линии, поддержка SIP Монохромный 102 × 33 ЖК-дисплей с подсветкой Встроенный 2-портовый коммутатор, Поддержка POE 3 программируемые кнопки (контекстно-зависимые) Порт для гарнитуры 2. Soundpoint IP 550 Количество линий Дисплей Интерфейсы Кнопки Фичи 4 линии, поддержка SIP Монохромный 320 × 160 ЖК-дисплей с подсветкой Встроенный 2-портовый коммутатор, Поддержка POE 4 программируемые кнопки (контекстно-зависимые) Поддержка XHTML 3. Soundpoint IP 650 Количество линий Дисплей Интерфейсы Кнопки Фичи 6 линии, поддержка SIP Монохромный 320 × 160 ЖК-дисплей с подсветкой Поддержка POE, USB порт 4 программируемые кнопки (контекстно-зависимые) Возможность расширения до 12 линий с модулем расширения Polycom, Поддержка XHTML Grandstream 1. GXP1405 Количество линий Дисплей Интерфейсы Кнопки Фичи 2 линии, 2 SIP аккаунта Монохромный 128 × 40 ЖК-дисплей Встроенный 2-портовый коммутатор, Поддержка POE 3 XML - программируемые контекстно-зависимые программируемые клавиши Загружаемая телефонная книга XML, LDAP, XML настройка экрана 2. GXP 280 Количество линий Дисплей Интерфейсы Кнопки Фичи 1 линия, 1 SIP аккаунт Монохромный 128 × 32 ЖК-дисплей Встроенный 2-портовый коммутатор 3 программируемые XML клавиши Поддержка XHTML, Встроенная громкая связь, порт для гарнитуры 3. GXP 2124 Количество линий Дисплей Интерфейсы Кнопки Фичи 4 линии, поддержка 4 SIP аккаунтов Монохромный 240 × 120 графический 2-портовый гигабитный коммутатор с поддержкой POE 24 + 4 Контекстно программируемые клавиши быстрого набора BLF Встроенный сервис приложений Yealink 1. SIP-T22P Количество линий Дисплей Интерфейсы Кнопки Фичи 3 линии, поддержка SIP Графический 132 × 64 ЖК-дисплей Встроенный 2-портовый коммутатор, Поддержка POE 3 программируемых функциональных клавиш, 4 программируемые клавиши, Возможность крепления к стене Отправка SIP SMS, голосовая почта 2. SIP-T28P Количество линий Дисплей Интерфейсы Кнопки Фичи 3 линии, поддержка SIP Графический 320 × 160 ЖК-дисплей Встроенный 2-портовый коммутатор с поддержкой POE 16 программируемых клавиш Встроенная громкая связь, порт для гарнитуры 3. SIP-T38G Количество линий Дисплей Интерфейсы Кнопки Фичи Поддержка SIP, 6 VoIP аккаунтов Графический 4,3 цветной ,ЖК-дисплей 480 х 272 пикселей Встроенный 2-портовый гигабит коммутатор с поддержкой POEE 16 BLF программируемых кнопок, Поддержка до 6 модулей расширения с программируемыми кнопками Встроенная громкая связь, порт для гарнитуры Snom 1. Snom 300 IP Количество линий Дисплей Интерфейсы Кнопки Фичи Поддержка 4 SIP аккаунтов ЖК-дисплей линейный (2 х 16 символов) 2-портовый коммутатор 6 программируемых функциональных клавиш Громкая связь 2. Snom 320 IP Количество линий Дисплей Интерфейсы Кнопки Фичи Поддержка 4 SIP аккаунтов ЖК-дисплей линейный (2 х 16 символов 2-портовый коммутатор с поддержкой POE 12 программируемых функциональных клавиш Встроенная громкая связь, порт для гарнитуры $dbName_ecom = "to-www_ecom"; $GoodID = "7111349514"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); $query_ecom = "SELECT `model`, `itemimage1`, `price`, `discount`, `url`, `preview115`, `vendor`, `vendorCode` FROM `items` WHERE itemid = '$GoodID';"; $res_ecom=mysql_query($query_ecom) or die(mysql_error()); $row_ecom = mysql_fetch_array($res_ecom); echo 'Кстати, купить '.$row_ecom['vendor'].' '.$row_ecom['vendorCode'].' можно в нашем магазине Merion Shop по ссылке ниже. С настройкой поможем 🔧 Купить '.$row_ecom['model'].''.number_format(intval($row_ecom['price']) * (1 - (intval($row_ecom['discount'])) / 100), 0, ',', ' ').' ₽'; $dbName = "to-www_02"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName) or die(mysql_error()); 3. Snom 370 IP Количество линий Дисплей Интерфейсы Кнопки Фичи Поддержка 12 SIP линий Наклонный 240 х 158 Графический дисплей SIP, 2-портовый коммутатор с поддержкой POE 12+42 программируемых функциональных клавиш Встроенная громкая связь
img
Управление дисковым пространством на сервере Linux - важная задача. Например, приложения диспетчера пакетов уведомят вас, сколько места на диске потребуется для установки. Чтобы эта информация была значимой, вы должны знать, сколько места доступно в вашей системе. В этом руководстве вы узнаете, как использовать команду df для проверки дискового пространства в Linux и команду du для отображения использования дискового пространства файловой системы. Проверить дисковое пространство Linux с помощью команды df Вы можете проверить свое дисковое пространство, просто открыв окно терминала и введя следующее: df Команда df означает освобождение диска и показывает количество места, занимаемого различными дисками. По умолчанию df отображает значения в блоках размером 1 килобайт. Отображение использования в мегабайтах и гигабайтах Вы можете отобразить использование диска в более удобочитаемом формате, добавив параметр –h: df –h Здесь отображается размер в килобайтах (K), мегабайтах (M) и гигабайтах (G). Понимание формата вывода Команда df выводит несколько столбцов: Filesystem Size Used Avail Use% Mounted on udev 210M 0 210M 0% /dev tmpfs 49M 1004K 48M 3% /run /dev/sda2 7.9G 4.3G 3.2G 58% / В вашем выводе может быть больше записей. Filesystem - это имя каждого конкретного диска. Сюда входят физические жесткие диски, логические (разделенные) диски, а также виртуальные или временные диски. Size - размер файловой системы. Used - объем пространства, используемого в каждой файловой системе. Avail - количество неиспользуемого (свободного) места в файловой системе. Use% - показывает процент использованного диска. Mounted on - это каталог, в котором расположена файловая система. Это также иногда называют точкой монтирования. Список файловых систем включает ваш физический жесткий диск, а также виртуальные жесткие диски: /dev/sda2 - это ваш физический жесткий диск. Он может быть указан как /sda1, /sda0 или у вас может быть даже несколько. /dev означает устройство. udev - это виртуальный каталог для каталога /dev. Это часть операционной системы Linux. tmpfs - их может быть несколько. Они используются /run и другими процессами Linux в качестве временных файловых систем для запуска операционной системы. Например, tmpfs /run/lock используется для создания файлов блокировки. Это файлы, которые не позволяют нескольким пользователям изменять один и тот же файл одновременно. Отобразить определенную файловую систему Команду df можно использовать для отображения определенной файловой системы: df –h /dev/sda2 Вы также можете использовать обратную косую черту: df –h / Это отображает использование вашего основного жесткого диска. Используйте точку монтирования (в столбце Mounted on), чтобы указать диск, который нужно проверить. Примечание. Команда df предназначена только для полной файловой системы. Даже если вы укажете отдельный каталог, df будет читать пространство всего диска. Отображение файловых систем по типу Чтобы перечислить все файловые системы по типу, используйте команду: df –ht ext4 Здесь перечислены диски с типом ext4 в удобочитаемом формате. Отображение размера в 1000 вместо 1024 Вы можете отображать использование диска в единицах 1000 вместо 1024: df –H Это может устранить путаницу в технологии хранения. Производители жестких дисков продают жесткие диски размером 1000 байт = 1 килобайт. Однако операционные системы делят это пространство так, что 1024 байта = 1 килобайт. Из-за этого на 1000-гигабайтном жестком диске остается примерно 930 гигабайт полезной памяти. Проверить дисковое пространство Linux с помощью команды du Команда du отображает использование диска. Этот инструмент может отображать использование диска для отдельных каталогов в Linux, давая вам более детальное представление об использовании вашего диска. Используйте его для отображения количества места, используемого вашим текущим каталогом: du Подобно команде df, вы можете сделать du удобочитаемым: du –h Он отображает список содержимого текущего каталога и сколько места они используют. Вы можете упростить отображение с помощью опции –s: du –hs Это показывает, сколько места занимает текущий каталог. Чтобы указать каталог или файл, установите флажок, используя следующие параметры: du –hs /etc/kernel-img.conf du –hs /etc При использовании второй команды вы могли заметить сообщение об ошибке «Отказано в разрешении». Это означает, что текущий пользователь не имеет прав доступа к определенным каталогам. Используйте команду sudo для повышения ваших привилегий: sudo du –hs /etc Примечание. Если вы работаете с CentOS Linux, вам может потребоваться использовать команду su, чтобы переключиться на пользователя root для доступа к защищенным каталогам. Итоги Теперь вы должны понимать, как использовать команды df и du для проверки дискового пространства в вашей системе Linux. Помните, что для отображения полного списка параметров используйте df ––help или du ––help.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59