По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Протокол маршрутизации OSPF (Open Shortest Path First) (про него можно прочитать тут, а про его настройку здесь) для обмена информации о топологии сети использует сообщения LSA (Link State Advertisement). Когда роутер получает LSA сообщение, он помещает его в базу Link-State DataBase (LSDB). Когда все базы между маршрутизаторами синхронизированы, OSPF использует алгоритм Shortest Path First, чтобы высчитать лучший маршрут между сетями. LSA содержат в себе информацию о маршруте передается внутри Link State Update (LSU) пакета. Каждый LSU пакет содержит в себе один или несколько LSA, и когда LSU отправляется между маршрутизаторами OSPF, он распространяет информацию LSA через сеть. Каждый LSA используется в определенных границах сети OSPF. Выглядит это вот так: Типы LSA OSPF в настоящее время определяет 11 различных типов LSA, однако, несмотря на большое разнообразие LSA, только около половины из них обычно встречаются в сетях OSPF, но мы рассмотрим их все. LSA Тип 1 – OSPF Router LSA Пакеты LSA Type 1 (Router LSA) отправляются между маршрутизаторами в пределах одной и той же зоны (area) где они были созданы и не покидают эту зону. Маршрутизатор OSPF использует пакеты LSA Type 1 для описания своих собственных интерфейсов, а также передает информацию о своих соседях соседним маршрутизаторам в той же зоне. LSA Тип 2 – OSPF Network LSA Пакеты LSA Type 2 (Network LSA) генерируются Designated Router’ом (DR) для описания всех маршрутизаторов, подключенных к его сегменту напрямую. Пакеты LSA Type 2 рассылаются между соседями в одной и той же зоны где они были созданы и остаются в пределах этой зоны. LSA Тип 3 – OSPF Summary LSA Пакеты LSA Type 3 (Summary LSA) генерируются с помощью пограничных маршрутизаторов Area Border Routers (ABR) и содержат суммарное сообщение о непосредственно подключенной к ним зоне и сообщают информацию в другие зоны, к которым подключен ABR. Пакеты LSA Type 3 отправляются в несколько зон по всей сети. На рисунке показано как маршрутизатор R2 ABR создает Type 3 Summary LSA и отправляет их в зону Area 0. Таким же образом R3 ABR роутер создает пакеты Type 3 и отправляет их в Area 2. В таблице маршрутизации маршруты, полученные таким образом, отображаются как “O IA” Видео: протокол OSPF (Open Shortest Path First) за 8 минут LSA Тип 4 – OSPF ASBR Summary LSA Пакеты LSA Type 4 (ASBR Summary LSA) - это LSA, которые объявляют присутствие автономного пограничного маршрутизатора Autonomous System Border Router (ASBR) в других областях. На схеме, когда R2 (ABR) принимает пакет LSA Type 1 от R1, он создаст пакет LSA Type 4 (Summary ASBR LSA), который передает маршрут ASBR, полученный из Area 1, и вводит его в Area 0. Хотя пакеты LSA Type 4 используются ABR для объявления маршрута ASBR через их зоны, он не будет использоваться самим ASBR в пределах его локальной зоны (Area 1); ASBR использует LSA Type 1 для информирования своих соседей (в данном случае R2) в своих сетях. LSA Тип 5 – OSPF ASBR External LSA Пакеты LSA Type 5 (ASBR External LSA) генерируются ASBR для передачи внешних перераспределенных маршрутов в автономную систему (AS) OSPF. Типичным примером LSA Type 5 будет внешний префикс или маршрут по умолчанию (default router), как показано на схеме. Этот внешний маршрут/префикс перераспределяется в OSPF-сеть ASBR (R1) и в таблице маршрутизации будет отображаться как "O E1" или "O E2". LSA Тип 6 – OSPF Group Membership LSA Пакеты LSA Type 6 (Group Membership LSA) были разработаны для протокола Multicast OSPF (MOSPF) , который поддерживает многоадресную маршрутизацию через OSPF. MOSPF не поддерживается Cisco и не пользуется широкой популярностью. LSA Тип 7 – OSPF Not So Stubby Area (NSSA) External LSA Пакеты LSA Type 7 (NSSA External LSA) используются для некоторых специальных типов зон, которые не позволяют внешним распределенным маршрутам проходить через них и таким образом блокируют распространение в них LSA Type 5. LSA Type 7 действуют как маска для LSA Type 5 пакетов, позволяя им перемещаться по этим специальным зоам и достигать ABR, который может переводить пакеты LSA Type 7 обратно в пакеты LSA Type 5. На схеме ABR R2 переводит LSA Type 7 в LSA Type 5 и рассылает его в сеть OSPF. LSA Тип 8 – OSPF External Attributes LSA (OSPFv2) / Link Local LSA (OSPFv3) Пакеты LSA Type 8 в OSPFv2 (IPv4) называются внешними атрибутами LSA и используются для передачи атрибутов BGP через сеть OSPF, в то время как адреса BGP передаются через LSA Type 5 пакеты, однако, эта функция не поддерживается большинством маршрутизаторов. С OSPFv3 (IPv6) , LSA Type 8 переопределяется для передачи информации IPv6 через сеть OSPF. LSA Тип 9, 10 и 11 Обычно LSA этих типов используются для расширения возможностей OSPF. Практическое применение этих LSA заключается в Traffic Engineering’е MPLS, где они используются для передачи параметров интерфейса, таких как максимальная пропускная способность, незанятая полоса пропускания и т.д. LSA Тип 9 – OSPF Link Scope Opaque (OSPFv2) / Intra Area Prefix LSA (OSPFv3) LSA Type 9 в OSPFv2 (IPv4) определяется как Link Scope Opaque LSA для передачи OSPF информации. Для OSPFv3 он переопределяется для обработки префикса связи для специального типа зоны, называемого Stub Area. LSA Тип 10 – OSPF Area Scope Opaque LSA Пакеты LSA Type 10 используются для потоковой передачи информации OSPF через маршрутизаторы других областей. Даже если эти маршрутизаторы не обрабатывают эту информацию, чтобы расширить функциональность OSPF, этот LSA используется для Traffic Engineering’а для объявлений MPLS и других протоколов. LSA Тип 11– OSPF AS Scope Opaque LSA Пакеты LSA Type 11 выполняют ту же задачу, что и пакеты LSA Type 10, но не пересылаются в специальные зоны (Stub зоны)
img
Интеграция CRM – системы и корпоративной системы связи (телефонии) позволяет значительно улучшить параметры обслуживания ваших клиентов. Диапазон возможностей очень широк: прослушивание звонков в интерфейсе CRM, всплывающая карточка при входящем звонке от клиента, умная маршрутизация, которая позволяет адресовать звонок на ответственного менеджера, который закреплен за клиентом в CRM, исходящие звонки «по щелчку» мышки на номер клиента, или как его часто называют click – to – call и история звонков по каждому конкретному клиенту – все это доступно для бизнеса, который решил объединить систему управления взаимоотношениями с клиентом и офисную телефонию. . Интересно? Тогда мы рады поделиться обзором возможностей интеграции 1С CRM и IP – АТС Asterisk. Всплывающая карточка клиента При входящем звонке от клиента, в интерфейсе 1С, при совпадении номера звонящего появляется карточка контрагента. Параллельно, создается документ «событие» типа «телефонный звонок». Как видно на скриншоте, у контрагента настроен персональный менеджер. При включенной функции «Умная маршрутизация», звонок приходит прямо на указанного менеджера, минуя настроенные в Asterisk правила маршрутизации. Это означает, что если в вашей организации настроено интерактивное голосовое меню (IVR), или простое голосовое приветствие, то клиенту, у которого настроен персональный менеджер не придется слушать его – звонок сразу отправится на внутренний номер ответственного менеджера. В другом случае, если клиент звонит вам впервые, то оператору будет предложено создать нового контрагента. Важный момент, что когда вы нажмете на кнопку «Добавить контрагента», в появившейся карточке будет автоматически добавлен номер звонящего: Кстати, мы посчитали: при условии интеграции 1С и телефонии, время обработки входящего звонка уменьшается на 2 минуты – вам просто не нужно идентифицировать клиента, а затем вручную вбивать его пользовательские параметры для поиска карточки – система сразу покажет всю необходимую информацию. История звонков История звонков хранится по каждому контрагенту отдельно, а так же, есть унифицированный интерфейс, в котором можно посмотреть статистику звонков по всем операторам. В интерфейсе будут доступны как входящие, так и исходящие звонки. Помимо этого, вы можете прослушать аудио запись разговора. Важно:Сами аудио файлы хранятся на сервере IP – АТС Asterisk. По факту, на копке прослушать, будут расположены ссылки на аудио – записи в папке /var/spool/asterisk/monitor Итак, переходим во вкладку «История звонков», как показано ниже: Откроется список звонков. Значком слева, обозначено направление звонка – входящее, или исходящее. Помимо этого, в таблице мы видим дату и время начала и окончания вызова, его продолжительность в секундах, направление, ссылка на аудио – запись, ответственного пользователя, которые обработал вызов, и контрагента, с которым этот вызов связан. Вся информация представлена в наглядном и интуитивно понятном исполнении. Звонки из 1С Мы снова все посчитали, и можем сказать, что набор номер из 1С экономит от 15 секунд на исходящем звонке. Цепочка получается следующая: оператора нажимает на карточке контрагента на кнопку «Позвонить» В открывшемся окне видим все контакты по указанному контрагенту. Чтобы позвонить по номеру, достаточно левой кнопкой мыши нажать на телефон: Как только мы нажмем на номер телефона контрагента, зазвонит наш настольный телефон. Как только мы поднимаем трубку, происходит соединение с контрагентом. Умная маршрутизация Настройка умной маршрутизации происходит на уровне IP – АТС Asterisk. Для корректной работы функционала переключения вызова на менеджера, достаточно просто поставить галочку в настройках входящего маршрута.
img
Десятая часть тут. Вы входите в комнату и кричите: «Игорь!» Ваш коллега Игорь оборачивается и начинает разговор о будущем IT-индустрии. Эта способность использовать один носитель (воздух, по которому движется ваш голос) для обращения к одному человеку, даже если многие другие люди используют этот же носитель для других разговоров в одно и то же время, в сетевой инженерии называется мультиплексированием. Более формально: Мультиплексирование используется, чтобы позволить нескольким объектам, подключенным к сети, обмениваться данными через общую сеть. Почему здесь используется слово объекты, а не хосты? Возвращаясь к примеру «разговор с Игорем", представьте себе, что единственный способ общения с Игорем — это общение с его ребенком-подростком, который только пишет (никогда не говорит). На самом деле Игорь-член семьи из нескольких сотен или нескольких тысяч человек, и все коммуникации для всей этой семьи должны проходить через этого одного подростка, и каждый человек в семье имеет несколько разговоров, идущих одновременно, иногда на разные темы с одним и тем же человеком. Бедный подросток должен писать очень быстро, и держать много информации в голове, например: "Игорь имеет четыре разговора с Леной", и должен держать информацию в каждом разговоре совершенно отдельно друг от друга. Это ближе к тому, как на самом деле работает сетевое мультиплексирование- рассмотрим: К одной сети могут быть подключены миллионы (или миллиарды) хостов, и все они используют одну и ту же физическую сеть для связи друг с другом. Каждый из этих хостов на самом деле содержит много приложений, возможно, несколько сотен, каждое из которых может связываться с любым из сотен приложений на любом другом хосте, подключенном к сети. Каждое из этих приложений может фактически иметь несколько разговоров с любым другим приложением, запущенным на любом другом хосте в сети. Если это начинает казаться сложным, то это потому, что так оно и есть. Вопрос, на который должен ответить эта лекция, заключается в следующем: Как эффективно мультиплексировать хосты через компьютерную сеть? Далее рассматриваются наиболее часто используемые решения в этом пространстве, а также некоторые интересные проблемы, связанные с этой основной проблемой, такие как multicast и anycast. Адресация устройств и приложений Компьютерные сети используют ряд иерархически расположенных адресов для решения этих проблем. Рисунок 1 иллюстрирует это. На рисунке 1 показаны четыре уровня адресации: На уровне физического канала существуют адреса интерфейсов, которые позволяют двум устройствам обращаться к конкретному устройству индивидуально. На уровне хоста существуют адреса хостов, которые позволяют двум хостам напрямую обращаться к конкретному хосту. На уровне процесса существуют номера портов, которые в сочетании с адресом хоста позволяют двум процессам обращаться к конкретному процессу на конкретном устройстве. На уровне диалога (разговора) набор порта источника, порта назначения, адреса источника и адреса назначения может быть объединен, чтобы однозначно идентифицировать конкретный разговор или поток. Эта схема и объяснение кажутся очень простыми. В реальной жизни все гораздо запутаннее. В наиболее широко развернутой схеме адресации - интернет-протоколе IP отсутствуют адреса уровня хоста. Вместо этого существуют логические и физические адреса на основе каждого интерфейса. Идентификаторы (адреса) мультиплексирования и мультиплексирование иерархически расположены друг над другом в сети. Однако есть некоторые ситуации, в которых вы хотите отправить трафик более чем на один хост одновременно. Для этих ситуаций существуют multicast и anycast. Эти два специальных вида адресации будут рассмотрены в следующих лекциях. О физических каналах, Broadcasts, и Failure Domains Простая модель, показанная на рисунке 1, становится более сложной, если принять во внимание концепцию широковещательных доменов и физического подключения. Некоторые типы мультимедиа (в частности, Ethernet) разработаны таким образом, что каждое устройство, подключенное к одной и той же физической линии связи, получает каждый пакет, передаваемый на физический носитель—хосты просто игнорируют пакеты, не адресованные одному из адресов, связанных с физическим интерфейсом, подключенным к физическому проводу. В современных сетях, однако, физическая проводка Ethernet редко позволяет каждому устройству принимать пакеты любого другого устройства. Вместо этого в центре сети есть коммутатор, который блокирует передачу пакетов, не предназначенных для конкретного устройства, по физическому проводу, подключенному к этому хосту. В этих протоколах, однако, есть явные адреса, отведенные для пакетов, которые должны передаваться каждому хосту, который обычно получал бы каждый пакет, если бы не было коммутатора, или что каждый хост должен был получать и обрабатывать (обычно это некоторая форма версия адреса все 1 или все 0). Это называется трансляцией (broadcasts). Любое устройство, которое будет принимать и обрабатывать широковещательную рассылку, отправленную устройством, называется частью широковещательной рассылки устройства. Концепция широковещательного домена традиционно тесно связана с областью сбоев, поскольку сбои в сети, влияющие на одно устройство в широковещательном домене, часто влияют на каждое устройство в широковещательном домене. Не удивляйтесь, если вы найдете все это довольно запутанным, потому что на самом деле это довольно запутанно. Основные понятия широковещания и широковещательных доменов все еще существуют и по-прежнему важны для понимания функционирования сети, но значение этого термина может измениться или даже не применяться в некоторых ситуациях. Будьте осторожны при рассмотрении любой ситуации, чтобы убедиться, что вы действительно понимаете, как, где и, что такие широковещательные домены действительно существуют, и как конкретные технологии влияют на отношения между физической связью, адресацией и широковещательными доменами.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59