По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Как правило, EIGRP-спикер роутер динамически обнаруживает своих соседей, отправляя multicast Hello сообщения. Однако есть возможность статически настроить этих соседей и общаться с ними с помощью unicast сообщений. Это делается крайне редко, но в таких случаях может оказаться полезным. Предыдущие статьи из цикла про EIGRP: Часть 1. Понимание EIGRP: обзор, базовая конфигурация и проверка Часть 2. Про соседство и метрики EIGRP Часть 2.2. Установка K-значений в EIGRP Часть 3. Конвергенция EIGRP – настройка таймеров Часть 4. Пассивные интерфейсы в EIGRP Следующие статьи из цикла: Часть 6. EIGRP: идентификатор роутера и требования к соседству Рассмотрим для примера Frame Relay WAN. Представьте себе, что роутер А имеет интерфейс, настроенный на десять постоянных виртуальных каналов Frame Relay (PVC). На другом конце двух этих PVC каналов находятся EIGRP-спикер роутеры. Однако другие восемь PVC каналов не подключены к EIGRP-спикер роутерам. В данной топологии, если бы WAN-интерфейс роутера A участвовал в EIGRP, то роутер A должен был бы реплицировать свое приветственное сообщение EIGRP и отправить копию всем десяти PVC, что привело бы к увеличению нагрузки на роутер A и увеличило использование полосы пропускания на других восьми PVC, не подключающихся к EIGRP роутеру. Это ситуация, при которой выигрыш состоит в статической настройке соседей EIGRP, а не от использования процесса обнаружения на основе многоадресной рассылки. Давайте рассмотрим вариант конфигурации статического соседства EIGRP в этой статье. Статическая конфигурация соседства Команда neighbor ip_address outgoing_interface вводится в режиме конфигурации роутера EIGRP для статического указания соседства EIGRP. Обратите внимание, что эта настройка должна быть выполнена на обоих соседях. Кроме того, имейте в виду, что IP-адрес, указанный в команде neighbor, принадлежит той же подсети, что и указанный исходящий интерфейс. На основе топологии, показанной ниже, следующие примеры настроек показывают, как роутеры OFF1 и OFF2 статически указывают друг на друга, в отличие от использования динамического обнаружения. OFF1#conf term Enter configuration commands, one per line. End with CNTL/Z. OFF1(config)#router eigrp 1 OFF1(config-router)#neighbor 10.1.1.2 gig 0/1 OFF1(config-router)#end OFF1# OFF2#conf term Enter configuration commands, one per line. End with CNTL/Z. OFF2(config)#router eigrp 1 OFF2(config-router)#neighbor 10.1.1.1 gig 0/1 OFF2(config-router)#end OFF2# На роутере OFF1 команда neighbor 10.1.1.2 gig 0/1 введенная в режиме конфигурации роутера EIGRP, дает команду процессу EIGRP прекратить отправку многоадресных сообщений из интерфейса Gig 0/1 и вместо этого начать использовать одноадресные сообщения. Он также инструктирует процесс маршрутизации EIGRP попытаться установить соседство с EIGRP-спикер роутером, по IP-адресу 10.1.1.2 (то есть IP-адрес интерфейса Gig 0/1 роутера OFF2). Поскольку статическая конфигурация соседа должна выполняться на обоих концах канала, роутер OFF2 аналогично настроен для отправки одноадресных сообщений EIGRP со своего интерфейса Gig 0/1 и для установления соседства с EIGRP-спикер роутером с IP-адресом 10.1.1.1 (то есть IP-адресом интерфейса gig 0/1 роутера OFF1). Проверка статического соседства Чтобы определить, какие интерфейсы на роутере статически настроены с соседом EIGRP, можно использовать команду show ip eigrp neighbors detail. В приведенном ниже примере показано, что эта команда выполняется на роутере OFF1. Обратите внимание, что выходные данные идентифицируют 10.1.1.2 как статически настроенного соседа. Предостережение по применению статического соседства Рассмотрим роутер, который должен установить более чем одно соседство EIGRP с одного интерфейса, например роутер OFF2 на рисунке ниже. В этой топологии роутеры OFF1 и OFF2 динамически cформировали соседство EIGRP. Позже был добавлен роутер OFF4, и роутеры OFF2 и OFF4 были настроены как соседи EIGRP статически. Однако после того, как была сделана статическая настройка, роутер OFF2 потерял свое соседство с роутером OFF1. Причина заключается в том, что роутер OFF2 отправляет только одноадресные сообщения EIGRP со своего интерфейса Gig0/1 и хочет получать только одноадресные сообщения EIGRP, поступающие на этот интерфейс. Однако роутер OFF1 все еще настроен (с настройками по умолчанию) для отправки и ожидания многоадресных сообщений EIGRP на своем интерфейсе Gig0/1. Итак, мораль этой истории заключается в том, что если вы настраиваете интерфейс роутера для установления соседства EIGRP статически, убедитесь, что все соседи EIGRP вне этого интерфейса также настроены для соседства статически. Дело за малым - осталось последняя статья из цикла - EIGRP: идентификатор роутера и требования к соседству.
img
Ну просто очень частый кейс: создается виртуальная машина на Linux ОС (Hyper-V или VMware, не важно), которая работает длительное время. Но в один прекрасный момент, память сервера переполняется и приходится расширять диск. В виртуализации (гипервизоре) это сделать очень просто - нарастить виртуальный диск с физического. А что делать внутри виртуалки, где живет Linux/CentOS? В статье мы расскажем, как расширить пространство памяти (диск) на сервера под управлением Linux/CentOS, последовательно управляя PV (Physical Volume, физические тома), VG (Volume Group, группа томов) и LV (Logical Volume, логические разделы). А вообще мы можем расширить диск или нужно создать новый? Это очень важный пункт. Обязательно проверьте вот что: дело в том, что диск разделенный на 4 раздела более не сможет быть расширен. Проверить это легко. Подключаемся к серверу CentOS и вводим команду fdisk -l: # fdisk -l Disk /dev/sda: 187.9 GB, 187904819200 bytes 255 heads, 63 sectors/track, 22844 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 25 200781 83 Linux /dev/sda2 26 2636 20972857+ 8e Linux LVM Если вывод команды у вас выглядит так, как показано выше - все хорошо. У вас пока только два раздела - /dev/sda1 и /dev/sda2. Можно создать еще два. Однако, если вывод команды будет выглядеть вот так: # fdisk -l Disk /dev/sda: 187.9 GB, 187904819200 bytes 255 heads, 63 sectors/track, 22844 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 25 200781 83 Linux /dev/sda2 26 2636 20972857+ 8e Linux LVM /dev/sda3 2637 19581 136110712+ 8e Linux LVM /dev/sda4 19582 22844 26210047+ 8e Linux LVM Это означает, что для решения задачи расширения памяти на сервере вам нужно создавать новый диск, а не расширять предыдущий. Мы рассматриваем первый вариант, когда у вас еще есть возможность создавать разделы. Погнали! Создаем новую партицию Проверяем что у нас на физических дисках командой fdisk -l # fdisk -l Disk /dev/sda: 10.7 GB, 10737418240 bytes 255 heads, 63 sectors/track, 1305 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 13 104391 83 Linux /dev/sda2 14 391 3036285 8e Linux LVM Сервер видит 10.7 ГБ места на диске. Начинаем создавать новую партицию (раздел) командой fdisk /dev/sda. После запроса ввода команды, указываем n, чтобы создать новую партицию: # fdisk /dev/sda The number of cylinders for this disk is set to 1305. There is nothing wrong with that, but this is larger than 1024, and could in certain setups cause problems with: 1) software that runs at boot time (e.g., old versions of LILO) 2) booting and partitioning software from other OSs (e.g., DOS FDISK, OS/2 FDISK) Command (m for help): n В следующем разделе конфигурации, указываем ключ p чтобы создать раздел. Тут будьте внимательны - самый первый пункт нашей статьи - у вас должно быть на этот момент строго меньше 4 партиций на диске! Command action e extended p primary partition (1-4) p На следующем экране задаем номер для партиции. Так как у нас уже есть партиции /dev/sda1 и /dev/sda2, то следуя порядковому номеру, мы указываем цифру 3: Partition number (1-4): 3 В следующем пункте, мы рекомендуем нажать Enter дважды, то есть принять предложенные по умолчанию значения: First cylinder (392-1305, default 392): Using default value 392 Last cylinder or +size or +sizeM or +sizeK (392-1305, default 1305): Using default value 1305 Отлично. Теперь мы меняем типа нашего раздела. Для этого, в следующем меню нажимаем ключ t, указываем номер партиции, который только что создали (напомним, это был номер 3), 3, а в качестве Hex code укажем 8e, а дальше просто Enter: Command (m for help): t Partition number (1-4): 3 Hex code (type L to list codes): 8e Changed system type of partition 3 to 8e (Linux LVM) Готово. Мы вернулись в основное меню утилиты fidsk. Сейчас ваша задача указать ключ w и нажать Etner, чтобы сохранить опции партиций на диске: Command (m for help): w После, что самое важное этого метода - перезагружать ничего не нужно! Нам просто нужно заново сканировать партиции утилитой partprobe: # partprobe -s Если команда выше не работает, то попробует сделать с помощью partx: # partx -v -a /dev/sda И если уже после этого у вас не появляется новая партиция - увы, вам придется согласовать время перезагрузки сервера и перезагрузить его. Успешным результатом этого шага будет вот такой вывод команды fdisk, где мы видим новую партицию: # fdisk -l Disk /dev/sda: 10.7 GB, 10737418240 bytes 255 heads, 63 sectors/track, 1305 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 13 104391 83 Linux /dev/sda2 14 391 3036285 8e Linux LVM /dev/sda3 392 1305 7341705 8e Linux LVM Расширяем логический раздел LV с новой партиции Теперь наша задача следующая: создаем физический том (PV) из новой партиции, расширяем группу томов (VG) из под нового объема PV, а затем уже расширяем логический раздел LV. Звучит сложно, но поверьте, это легко! Итак, по шагам: создаем новый физический том (PV). Важно: у вас может быть не /dev/sda3, а другая, 4, например, или вообще /dev/sdb3! Не забудьте заменять в командах разделы, согласно вашей инсталляции. # pvcreate /dev/sda3 Physical volume "/dev/sda3" successfully created Отлично. Теперь находим группу томов (VG, Volume Group). А точнее, ее название. Делается это командой vgdisplay: # vgdisplay --- Volume group --- VG Name MerionVGroup00 ... Найдено. Наша VG называется MerionVGroup00. Теперь мы ее расширим из пространства ранее созданного PV командой vgextend: # vgextend MerionVGroup00 /dev/sda3 Volume group "MerionVGroup00" successfully extended Теперь расширяем LV из VG. Найдем название нашей LV, введя команду lvs: # lvs LV VG Attr LSize MerionLVol00 MerionVGroup00 MerionLVol00 - найдено.Расширяем эту LV, указывая до нее путь командой lvextend /dev/MerionVGroup00/MerionLVol00 /dev/sda3: # lvextend /dev/MerionVGroup00/MerionLVol00 /dev/sda3 Extending logical volume MerionLVol00 to 9.38 GB Logical volume MerionLVol00 successfully resized Почти у финиша. Единственное, что осталось, это изменить размер файловой системы в VG, чтобы мы могли использовать новое пространство. Используем команду resize2fs: # resize2fs /dev/MerionVGroup00/MerionLVol00 resize2fs 1.39 (29-May-2006) Filesystem at /dev/MerionVGroup00/MerionLVol00 is mounted on /; on-line resizing required Performing an on-line resize of /dev/MerionVGroup00/MerionLVol00 to 2457600 (4k) blocks. The filesystem on /dev/MerionVGroup00/MerionLVol00 is now 2457600 blocks long. Готово. Проверяет доступное место командой df -h. Enjoy! Получаете ошибку в resize2fs: Couldn't find valid filesystem superblock Если вы получили ошибку вида: $ resize2fs /dev/MerionVGroup00/MerionLVol00 resize2fs 1.42.9 (28-Dec-2013) resize2fs: Bad magic number in super-block while trying to open /dev/MerionVGroup00/MerionLVol00 Couldn't find valid filesystem superblock. Это значит, что у вас используется файловая система формата XFS, вместо ext2/ext3. Чтобы решить эту ошибку, дайте команду xfs_growfs: $ xfs_growfs /dev/MerionVGroup00/MerionLVol00 meta-data=/dev/MerionVGroup00/MerionLVol00 isize=256 agcount=4, agsize=1210880 blks = sectsz=512 attr=2, projid32bit=1 = crc=0 data = bsize=4096 blocks=4843520, imaxpct=25 = sunit=0 swidth=0 blks naming =version 2 bsize=4096 ascii-ci=0 ftype=0 log =internal bsize=4096 blocks=2560, version=2 = sectsz=512 sunit=0 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 Как тебе такое, Илон Маск?
img
Одним из важных компонентов установления соединения по протоколу SIP является протокол Session Description Protocol, или сокращенно SDP. О протоколе SDP впервые заговорили в 1998 году в рамках опубликованного RFC2327. Спустя 8 лет, в 2006 году протокол претерпел некоторые изменения, которые были отображены в RFC4566. Протокол SDP используется для установления соединения и согласования параметров передачи и приема аудио или видео потоков между оконечными устройствами. Наиболее важными параметрами обмена являются IP – адреса, номера портов и кодеки. Давайте разбираться? Пример SDP При установлении сессии SDP параметры передаются в рамках SIP – запросов. Давайте взглянем на один из таких запросов. В данном случае распарсим SIP INVITE, который прилетело на нашу IP – АТС Asterisk с помощью утилиты sngrep: INVITE sip:74996491913@192.168.x.xxx:5061;transport=UDP SIP/2.0 Via: SIP/2.0/UDP 80.xx.yy.zz:5060;branch=z9hG4bK-524287-1-MThkZjMzNzMyXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX;rport Via: SIP/2.0/UDP 80.xx.yy.zz:5077;branch=z9hG4bK-XXXXXXXXXXXXXXXX;rport=5077 Max-Forwards: 69 Record-Route: <sip:80.xx.yy.zz:5060;lr;transport=UDP> Contact: <sip:80.xx.yy.zz:5077> To: <sip:74996491913@80.xx.yy.zz> From: <sip:7925XXXXXXX@80.xx.yy.zz>;tag=qdpxhe2avyyjcqfn.o Call-ID: fb9909e8fYYYYYYYYYYYYYYYYYYYYYY CSeq: 479 INVITE Expires: 300 Allow: INVITE, ACK, BYE, CANCEL, INFO, SUBSCRIBE, NOTIFY, REFER, MESSAGE, OPTIONS, UPDATE Content-Disposition: session Content-Type: application/sdp User-Agent: Sippy P-Asserted-Identity: <sip:7925XXXXXXX@80.xx.yy.zz> Remote-Party-ID: <sip:7925XXXXXXX@80.xx.yy.zz>;party=calling h323-conf-id: 4133864240-4217115111-2706418710-XXXXXXXXX Portasip-3264-action: offer 1 cisco-GUID: 4133864240-4217115111-2706418710-XXXXXXXXX Content-Length: 278 v=0 o=Sippy 1011212504475793896 1 IN IP4 80.xx.yy.zz s=- c=IN IP4 80.xx.yy.zz t=0 0 m=audio 57028 RTP/AVP 0 8 18 101 a=rtpmap:0 PCMU/8000 a=rtpmap:8 PCMA/8000 a=rtpmap:18 G729/8000 a=fmtp:18 annexb=yes a=rtpmap:101 telephone-event/8000 a=fmtp:101 0-15 a=sendrecv В приведенном примере можно увидеть, что основная часть SIP – сообщения отделена от SDP сегмента пустой строкой. Помимо прочего, поле Content-Type, что сообщение сопоставимо с SDP параметрами. Про SDP поля Каждый из параметров SDP сообщения можно отнести к одной из следующих категорий: Имя сессии; Время, в течении которого сессия активна; Параметры медиа; Информация о пропускной способности; Контактная информация; Поговорим об основных параметрах. Они всегда имеют следующее обозначение: <поле> = <значение>. Поле всегда обозначается 1 буквой. Поле Значение Формат v= версия протокола v=0 o= инициатор сессии и соответствующие идентификаторы o=<имя_пользователя> <идентификатор_сессии> <версия> <тип_сети> <тип_адреса> <адрес>. В нашем примере поле o=Sippy 1011212504475793896 1 IN IP4 80.xx.yy.zz (IN - тип сети, интернет, IP4 - тип адреса, IPv4; s= имя сессии в нашем примере прочерк ("-"), имя сессии не указано; c= информация о подключении; Синтаксис таков: c=<тип_сети> <тип_адреса> <адрес>. В нашем примере IN IP4 80.xx.yy.zz. Параметры IN/IP4 объяснены выше. t= время активности сессии Синтаксис поля таков: t=<начальное_время> <конечное_время>. Это обязательное поле, но важно отметить, что оно весьма субъективно, так как невозможно предсказать точное время начала и окончания. В нашем примере t=0 0 m= тип передачи медиа данных, формат и адресация m=<тип_медиа> <порт> <транспорт> <формат_передачи>. Давайте разберемся - у нас m=audio 57028 RTP/AVP 0 8 18 101, это означает передачу аудио (может быть значение video, или передача обоих типов), порт передачи обозначен как 57028, транспорт, указанный как RTP/AVP, означает передачу по протоколу RTP в рамках стандарта Audio and Video Conferences with Minimal Control, который описан в RFC3551. После, первый 0 означает протокол G.711 uLaw, 8 означает G.711 ALaw, 18 означает G.729. То есть условно говоря, нам предложено предпочтение кодеков сначала G.711 uLaw, затем G.711 ALaw, и третьим приоритетом G.729. 101 означает поддержку динамического типа данных, например DTMF. a= параметры сессии a=<параметр> или a=<параметр><значение>. SDP сессия может содержать несколько дополнительных атрибутов передачи. Более подробно мы рассмотрим далее. Помимо указанных параметров, зачастую встречаются такие как k=, в рамках которого описывается метод шифрования, или i=, содержащий дополнительную информацию о сессии. Поговорим про параметры поля a=: Параметр Синтаксис и описание rtpmap a=rtpmap:<тип> <название_кодировки>/<частота_дискретизации> [/<параметры_кодирования>]. Данный параметр подсказывает имена кодеков, частоту и прочие параметры кодирования для данных, обозначенных в параметре m=. Например, у нас a=rtpmap:0 PCMU/8000, означает использование G.711 с импульсно - кодовой модуляцией по U - закону с частотой дискретизации 8000 Гц. sendrecv a=sendrecv Данный параметр указывает на то, что мы собираемся отправлять и получать медиа - данные. Например, возможно опция отправки (sendonly), только получение (recvonly) и отключения медиа (inactive); ptime a=ptime:<длительность_пакета> Продолжительность RTP - пакет (в миллисекундах). Условно говоря, какой длительности фрагмент голоса переносит один RTP - пакет; fmtp a=fmtp:<формат> <специальные_параметры> Параметр описывает дополнительные параметры сессии, например, такие как режим подавления тишины (VAD) и прочие;
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59