По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Алгоритм – это набор четко сформулированных инструкций, который применяется для решения конкретной задачи. Эти задачи вы можете решать любым удобным для вас способом.  Это значит, что ваш метод, который вы используете для решения задачи, может отличаться от моего, но при этом мы оба должны получить один и тот же результат.  Так как способ решения одной и той же задачи может быть не один, то должен существовать и способ оценить эти решения или алгоритмы с точки зрения оптимальности и эффективности (время, которое требуется для запуска/выполнения вашего алгоритма, и общий объем потребляемой памяти). Этот этап довольно важный для программистов. Его цель - помочь убедиться, что их приложения работают должным образом, и помочь написать чистый программный код.  И вот здесь на первый план выходит обозначение «О большое». «О большое» - это метрика, которая определяет эффективность алгоритма. Она позволяет оценить, сколько времени занимает выполнение программного кода с различными входными данными, и измерить, насколько эффективно этот программный код масштабируется по мере увеличения размера входных данных.  Что такое «О большое»? «О большое» показывает сложность алгоритма для наихудшего случая. Для описания сложности алгоритма здесь используются алгебраические выражения.  «О большое» определяет время выполнения алгоритма, показывая, как будет меняться оптимальность алгоритма по мере увеличения размера входных данных. Однако этот показатель не расскажет вам о том, насколько быстро работает ваш алгоритм.  «О большое» измеряет эффективность и оптимальность алгоритма, основываясь на временной и пространственной сложности.    Что такое временная и пространственная сложность? Один из самых основных факторов, который влияет на оптимальность и эффективность вашей программы – это оборудование, ОС и ЦП, которые вы используете.  Однако при анализе оптимальности алгоритма это не учитывается. Куда важнее учесть временную и пространственную сложность как функцию, которая зависит от размера входных данных.  Временная сложность алгоритма – это то, сколько времени потребуется для выполнения алгоритма в зависимости от размера входных данных. Аналогично пространственная сложность – это то, сколько пространства или памяти потребуется для выполнения алгоритма в зависимости от размера входных данных.  В данной статье мы рассмотрим временную сложность. Эта статья станет для вас своего рода шпаргалкой, которая поможет вам понять, как можно рассчитать временную сложность для любого алгоритма. Почему временная сложность зависит от размера входных данных? Для того, чтобы полностью понять, что же такое «зависимость от входных данных», представьте, что у вас есть некий алгоритм, который вычисляет сумму чисел, основываясь на ваших входных данных. Если вы ввели 4, то он сложит 1+2+3+4, и на выходе получится 10; если вы ввели 5, то на выходе будет 15 (то есть алгоритм сложил 1+2+3+4+5). const calculateSum = (input) => {  let sum = 0;  for (let i = 0; i <= input; i++) {    sum += i;  }  return sum; }; В приведенном выше фрагменте программного кода есть три оператора: Давайте посмотрим на картинку выше. У нас есть три оператора. При этом, так как у нас есть цикл, то второй оператор будет выполняться, основываясь на размере входных данных, поэтому, если на входе алгоритм получает 4, то второй оператор будет выполняться четыре раза. А значит, в целом алгоритм выполнится шесть (4+2) раз.  Проще говоря, алгоритм будет выполняться input+2 раза; input может быть любым числом. Это говорит о том, что алгоритм выражается в терминах входных данных. Иными словами, это функция, которая зависит от размера входных данных.  Для понятия «О большое» есть шесть основных типов сложностей (временных и пространственных): Постоянное время: O1 Линейное время: On Логарифмическое время: On log n  Квадратичное время: On2 Экспоненциальное время: O2n Факториальное время: On! Прежде чем мы перейдем к рассмотрению всех этих временных сложностей, давайте посмотрим на диаграмму временной сложности «О большого».  Диаграмма временной сложности «О большого» Диаграмма «О большого» - это асимптотические обозначение, которое используется для выражения сложности алгоритма или его оптимальности в зависимости от размера входных данных.  Данная диаграмма помогает программистам определить сценарий наихудшего случая, а также оценить время выполнения и объем требуемой памяти.  Следующий график иллюстрирует сложность «О большого»:  Глядя на приведенную выше диаграмму, можно определить, что O1 – постоянное время выполнения алгоритма, является наилучшим вариантом. Это означает, что ваш алгоритм обрабатывает только один оператор без какой-либо итерации. Дальше идет Olog n , что тоже является неплохим вариантом, и другие: O1 – отлично/наилучший случай Olog n  – хорошо On – удовлетворительно On log n  – плохо On2, O2n, On! – ужасно/наихудший случай Теперь вы имеете представление о различных временных сложностях, а также можете понять, какие из них наилучшие, хорошие или удовлетворительные, а какие плохие и наихудшие (плохих и наихудших временных сложностей следует избегать). Следующий вопрос, который может прийти на ум: «какой алгоритм какую сложность имеет?» И это вполне логичный вопрос, ведь эта статья задумывалась как шпаргалка. ?  Когда ваши расчеты не зависят от размера входных данных, то это постоянная временная сложность - O1. Когда размер входных данных уменьшается в два раза, например, при итерации, обработке рекурсии и т.д., то это логарифмическая временная сложность - Olog n . Когда у вас один цикл в алгоритме, то это линейная временная сложность - On. Когда у вас есть вложенные циклы, то есть цикл в цикле, то это квадратичная временная сложность - On2. Когда скорость роста удваивается при каждом добавлении входных данных, то это экспоненциальная временная сложность - O2n. Давайте перейдем к описанию временных сложностей. Для каждой будут приведены примеры. Отмечу, что в примерах я использовал JavaScript, но если вы понимаете принцип и что из себя представляет каждая временная сложность, то не имеет значения, какой язык программирования вы выберите.  Примеры временных сложностей «О большого» Постоянное время: O1 Когда алгоритм не зависит от размера входных данных n, то говорят, что он имеет постоянную временную сложность порядка O1. Это значит, что время выполнения алгоритма всегда будет одним и тем же, независимо от размера входных данных.  Допустим, что задача алгоритма – вернуть первый элемент массива. Даже если массив состоит из миллиона элементов, временная сложность будет постоянной, если использовать следующий подход для решения задачи: const firstElement = (array) => {  return array[0]; }; let score = [12, 55, 67, 94, 22]; console.log(firstElement(score)); // 12 Приведенная выше функция выполняет лишь один шаг, а это значит, что функция работает за постоянное время, и ее временная сложность O1.  Однако, как уже было сказано, разные программисты могут найти разные способы решения задачи. Например, другой программист может решить, что сначала надо пройти по массиву, а затем уже вернуть первый элемент: const firstElement = (array) => {  for (let i = 0; i < array.length; i++) {    return array[0];  } }; let score = [12, 55, 67, 94, 22]; console.log(firstElement(score)); // 12 Это просто пример – вряд ли кто-то будет решать эту задачу таким способом. Но здесь уже есть цикл, а значит алгоритм не будет выполняться за постоянное время, здесь в игру вступает линейное время с временной сложностью On. Линейное время: On Линейная временная сложность возникает, когда время работы алгоритма увеличивается линейно с размером входных данных. Когда функция имеет итерацию по входному значению n, то говорят, что она имеет временную сложность порядка On. Допустим, алгоритм должен вычислить и вернуть факториал любого числа, которое вы введете. Это значит, что если вы введете число 5, то алгоритм должен выполнить цикл и умножить 1·2·3·4·5, а затем вывести результат – 120: const calcFactorial = (n) => {  let factorial = 1;  for (let i = 2; i <= n; i++) {    factorial = factorial * i;  }  return factorial; }; console.log(calcFactorial(5)); // 120 Тот факт, что время выполнения алгоритма зависит от размера входных данных, подразумевает наличие линейной временной сложности порядка On. Логарифмическое время: Olog n  Это чем-то похоже на линейную временную сложность. Однако здесь время выполнения зависит не от размера входных данных, а от их половины. Когда размер входных данных уменьшается на каждой итерации или шаге, то говорят, что алгоритм имеет логарифмическую временную сложность.  Такой вариант считается вторым сверху списка лучших, так как ваша программа работает лишь с половиной входных данных. И при всем при этом, размер входных данных уменьшается с каждой итерацией.  Отличный пример – функция бинарного поиска, которая делит отсортированный массив, основываясь на искомом значения.  Допустим, что нам надо найти индекс определенного элемента в массиве с помощью алгоритма бинарного поиска: const binarySearch = (array, target) => {  let firstIndex = 0;  let lastIndex = array.length - 1;  while (firstIndex <= lastIndex) {    let middleIndex = Math.floor((firstIndex + lastIndex) / 2);    if (array[middleIndex] === target) {      return middleIndex;    }    if (array[middleIndex] > target) {      lastIndex = middleIndex - 1;    } else {      firstIndex = middleIndex + 1;    }  }  return -1; }; let score = [12, 22, 45, 67, 96]; console.log(binarySearch(score, 96)); Приведенный выше программный код демонстрирует бинарный поиск. Судя по нему, вы сначала получаете индекс среднего элемента вашего массива, дальше вы сравниваете его с искомым значением и, если они совпадают, то вы возвращаете этот индекс. В противном случае, если они не совпали, вы должны определить, искомое значение больше или меньше среднего, чтобы можно было изменить первый и последний индекс, тем самым уменьшив размер входных данных в два раза. Так как на каждой такой итерации размер входных данных уменьшается в два раза, то данный алгоритм имеет логарифмическую временную сложность порядка Olog n . Квадратичное время: On2 Когда в алгоритме присутствуют вложенные циклы, то есть цикл в цикле, то временная сложность уже становится квадратичной, и здесь нет ничего хорошего.  Представьте, что у вас есть массив из n элементов. Внешний цикл будет выполняться n раз, а внутрениий – n раз для каждой итерации внешнего цикла, и, соответственно, общее количество итераций составит n2. Если в массиве было 10 элементов, то количество итераций будет 100 (102). Ниже приведен пример, где сравниваются элементы для того, чтобы можно было вывести индекс, когда найдутся два одинаковых: const matchElements = (array) => {  for (let i = 0; i < array.length; i++) {    for (let j = 0; j < array.length; j++) {      if (i !== j && array[i] === array[j]) {        return `Match found at ${i} and ${j}`;      }    }  }  return "No matches found ?"; }; const fruit = ["?", "?", "?", "?", "?", "?", "?", "?", "?", "?"]; console.log(matchElements(fruit)); // "Match found at 2 and 8" В этом примере есть вложенный цикл, а значит, здесь будет квадратичная временная сложность порядка On2.  Экспоненциальное время: O2n Экспоненциальная временная сложность появляется, когда скорость роста удваивается с каждым добавлением входных данных n, например, когда вы обходите все подмножества входных элементов. Каждый раз, когда единицу входных данных увеличивают на один, то количество итераций, которые выполняет алгоритм, увеличиваются в два раза.  Хороший пример – рекурсивная последовательность Фибоначчи. Допустим, дано число, и необходимо найти n-ый элемент последовательности Фибоначчи.  Последовательность Фибоначчи – это математическая последовательность, в которой каждое число является суммой двух предыдущих; первые два числа – 0 и 1. Третье число – 1, четвертое – 2, пятое – 3 и т.д. (0, 1, 1, 2, 3, 5, 8, 13, …). Соответственно, если вы введете число 6, то выведется 6-й элемент в последовательности Фибоначчи – 8: const recursiveFibonacci = (n) => {  if (n < 2) {    return n;  }  return recursiveFibonacci(n - 1) + recursiveFibonacci(n - 2); }; console.log(recursiveFibonacci(6)); // 8 Приведенный выше алгоритм задает скорость роста, которая удваивается каждый раз, когда добавляются входные данные. А значит, данный алгоритм имеет экспоненциальную временную сложность порядка O2n. Заключение Из данной статьи вы узнали, что такое временная сложность, как определить оптимальность алгоритма с помощью «О большого», а также рассмотрели различные временные сложности с примерами. 
img
В данной статье мы постараемся разобрать, как создать, отследить и завершить процесс. Посмотрим следующие задачки: Запуск задачи в активном и фоновом режиме; Заставить задачу выполнятся после выхода из системы; Отслеживать и сортировать активные процессы; Завершать процессы; Постараемся разобрать следующие понятия: Fg (foreground) и bg (background); Nohup (no hang up); Ps - информация об активных процессах; Pstree - дерево процессов; Pgrep - поиск процессов; Pkill - завершение процессов; Top - диспетчер задач; Free - загрузка оперативной памяти; Uptime - время и полнота загрузки; Screen - управление сессиями. Начнем разбирать данную тему с простой команды. Команда sleep man sleep С помощью данной команды мы можем выставить задержку на определенное время, собственно, о чем и написано в справочной статье. Она обычно пригождается, когда необходимо выполнить какой-то скрипт и компьютер должен немного подождать. В частности, мы можем посмотреть следующий пример: sleep 1000 - после данной команды, мы можем вводить в консоль различные символы, они будут появляться на экране но машина и операционная система не будет реагировать. Для того чтобы прервать нажимаем ctrl + c сочетание клавиш. Когда набираем команду, она начинает работать в активном режиме и занимает консоль, и мы соответственно ничего не можем делать. Так как компьютер у нас сейчас много задачный, процессор многозадачный, операционная система многозадачная, мы можем запускать какие-то процессы в фоновом режиме. Для того, чтобы это сделать необходимо набрать команду и в конце поставить знак амперсанда "". Т.е. мы получим следующее sleep 1000. Как, только мы написали команду плюс амперсанд и нажали Enter. Мы видим появился один процесс, и он бежит в фоновом режиме. Есть такая команда jobs, она показывает выполняющиеся задачи, бегущие процессы. И вот мы видим, что у нас есть одна выполняющаяся задача sleep на 1000 секунд. Мы можем еще запустить один sleep 999. Практического эффекта нету, данный пример необходим для наглядности процессов. Появился еще один процесс с отличным от прошлого id. Итого у нас 2 процесса. Теперь представим, что нам необходимо поработать с сервером, но в настоящий момент необходимо обновить, например, репозиторий или пакеты. Мы запускаем процесс обновления с амперсандом и продолжаем работу в обычном режиме, консоль стандартного вывода у нас свободна. Но если нам необходимо вернутся к процессу, который бежит в фоне. Мы можем использовать команду fg и номер процесса, например, 1 или 2. Так же сданной командой мы можем использовать PID, т.е. уникальный идентификатор процесса. Таким образом мы можем видеть, что мы оказались внутри указанного процесса. Для выхода нажимаем ctrl+z. И теперь данная задача будет остановлена. В чем можно убедится, используя команду job. И соответственно, чтобы запустить процесс используем команду bg #процесса. Небольшой итог: Есть команда, показывающая процессы jobs. И команды fg и bg, которые позволяют отправить процессы в фоновый режим и вернуть обратно. Команда PS man ps Согласно описанию, данная команда показывает снапшот текущих процессов. У данной команды очень много ключей, но очень часть данная команда используется в таком виде ps aux. Это означает вывести результат по всем пользователям, все процессы, даже запущенные вне нашего терминала. Это помогает, когда у нас много пользовательская среда, или мы запустили от имени суперпользователя, а сами переключились на текущего. Выглядит данная картинка примерно так: На данной картинке мы можем увидеть от имени какого пользователя процессы выполняются. Это снимок процессов системы, статический снапшот. Он выполнен на тот момент, когда мы подали команду на терминал. Внизу на картинке, можно увидеть наши sleep, значит они на момент ввода команды бежали в фоновом режиме. Кроме того, мы можем запускать данную команду, через pipeline. Например: ps aux | grep sleep Команда grep - отсортировать. И в данном случае мы увидим только два наших процесса. Мы так же можем убить процессы. Процессы убиваются командой kill PID (т.е по его ID). Вот таким образом мы можем завершить процесс. Запустим еще несколько процессов. Теперь мы можем их завершить массово с использованием их сортировки killall sleep например. Мы можем увидеть, что процессы завершились. Данная команда может быть полезно при зависании какого ни будь приложения. Действие данной команды работает, только в пределах пользователя от которого данную команду запустили. Если выполнять данную команду от root. То данная команда завершит процессы у всех пользователей с именем sleep. Если мы создадим процесс, а затем выйдем из терминала (команда exit). Заходя обратно выполняя ps aux мы так же в фоне увидим, что процесс выполняется. А набрав jobs мы не увидим данный процесс. Это происходит потому, что команда jobs показывает только текущие процессы запущенные из данной консоли. Есть такой тонкий нюанс. Если мы запускаем в нашем сеансе процессы, бэкграунд или активный режим, при завершении сессии наши процессы завершаются. Получается следующее, при подключении к серверу, через ssh все наши процессы запущенные при обрыве сессии прервутся. Например, мы запустим процесс обновления системы и завершим нашу сессию процесс обновления прервется. Чтобы у нас процессы не завершались при выходе из системы пользователя, есть команда nohup. Используем ее. nohup sleep 10000 Во-первых, данная команда позволяет заменить стандартный вывод на вывод в файл и во -вторых команда будет выполнятся, пока будет запущенна операционная система. Вне зависимости от наличия пользователя в системе, который запустил. Есть достаточно много нюансов. Можно логинится, разлогиниватся и попадать в тот же сеанс, а в современных Ubuntu уже практически нет необходимости использовать данную команду. Но все же, чтобы гарантированно процесс работал необходимо использовать данную команду. Теперь можно посмотреть команду pstree. Данная команда позволяет посмотреть все процессы в иерархическом виде дерева. На картинке, четко виден родительский процесс systemd, который запускает все остальные процессы. Например sshd - подключение к серверу, которое запускает bash - интерпретатор, далее запускается sudo , su и pstree в самом конце. Есть еще интересные команды pgrep и pkill. Есть просто запустить pgrep то данная команда ничего не выдаст. А если в совокупности с ключами и названием процесса, то данная команда вернет идентификационный номер данного процесса. Мы так же можем добавить ключ -l, то команда вернет и название процессов. У нее много других ключей. Можно, например, команде сказать pgrep -u root -l, т.е показать все процессы пользователя root. Следовательно, команда pkill позволяет убить все эти процессы. Например: pkill sleep. Мы убили все процессы sleep. В реальной же ситуации, мы обычно используем команду top. Данная команда позволяет наблюдать и не только в режиме реального времени за процессами. Посмотрим на данные выводимые данной утилитой. Мы видим, что по умолчанию данная утилита сортирует по загрузке процессора. Мы можем перейти в режим помощи нажав клавишу "h". Ключей и опций у данной утилиты достаточно много. Можно воспользоваться клавишами """", для переключения сортировки, например на сортировку по загруженности оперативной памяти. В данной утилите мы можем сказать, что необходимо завершить той или иной процесс. Практически он аналогичен Диспетчеру задач в операционной системе windows. Для того, чтобы убить процесс нажимаем клавишу "k" и система ждет ввода PID процесса. По умолчанию он берет тот PID, который находится в самом верху. Т.е. по факту самый загружающий процесс систему. Если у нас, что-то висит, то достаточно удобно завершить такой процесс. После ввода PID система запросит, какой сигнал ей необходимо послать по умолчанию сигнал номер 15 или sigterm - т.е. сигнал завершения работы в мягком режиме. Если мы хотим использовать более жесткий вариант отправляем цифру 9, или sigkill. В таком случае операционная система, очень жестко потушит процесс наплевав на зависимые процессы от данного и те процессы от которых зависит данный процесс. Команда uptime man uptime Данная команда показывает, как долго у нас запущена система. Сам по себе эти данные нам ничего не дают. Данная команда. полезна в контексте, если нам передали сервера, и мы видим у них очень большой аптайм, следовательно, сервера не обновлялись и не перезагружались. Данная команда полезна помимо параметра сколько запущенна системаданная команда показывает общую загрузку системы. Это показывают три цифры в выводе данной команды. Там достаточно сложная формула по которой рассчитывается данный параметра, во внимание принимается загрузка ЦП, жестких дисков, оперативной памяти. Первая цифра - это загрузка в минуту, вторая цифра - это загрузка в последние пять минут и третья цифра - это загрузка в последние 15 минут. Исходя из последней картинки, цифры примерно одинаковые, а значит нагрузка равномерна. Если цифры скачут, значит необходимо анализировать, особенно если на сервере есть просадка по производительности. Команда free man free Данная команда показывает свободное и используемое количество памяти в системе. И в данном случае, так же, как и в windows task manager, под памятью понимается оперативная память, так и файл подкачки (windows), раздел подкачки (swap Linux). Swap раздел, это раздел системы используемый для ее нужд если системе не хватает оперативной памяти. Это раздел на жестком диске, который используется в качестве оперативной памяти. Но жесткий диск значительно медленней оперативной памяти, поэтому сначала заполняется оперативная память, а только потом используется раздел подкачки (swap). Команда screen man screen Она есть не во всех дистрибутивах по умолчанию. Эта команда, которая позволяет создать типа оконного менеджера. Это удобно, когда подключаешься по ssh и получаешь, как будто бы несколько окон в пределах одного терминала. Понятно, что современные ssh клиенты позволяют открыть сколько угодно вкладок и работать с ними параллельно. Запускаем screen. Переходим во внутрь screen, запускаем какую-нибудь команду, например, ping ya.ru. Далее нажимаем ctrl+a и затем d и получаем: Первая команда позволяет находится в текущем окне, а вторая клавиша d позволяет свернуть текущий скрин. Теперь можно закрывать терминал, вылогиниваться из консоли. Процесс запущенный в скрине будет работать. Для того, чтобы восстановить окно с процессом достаточно ввести screen -r и мы вернемся к бегущему процессу. Для того, чтобы завершить screen необходимо внутри ввести exit. Если у нас есть потребность запустить несколько окон, то можно это сделать следующим образом: Screen -S yandex ping ya.ru, screen -S rambler ping r0.ru Где yandex и rambler - это просто названия окон (alias) Просмотреть бегущие окна: screen - ls Чтобы вернутся к нужному окну вводим screen -r alias
img
Существует новая тенденция для стандартов проектирования топологии сети - создание быстрой, предсказуемой, масштабируемой и эффективной коммуникационной архитектуры в среде центра обработки данных. Речь идет о топологии Leaf-Spine, о которой мы поговорим в этой статье. Почему Leaf-Spine? Учитывая повышенный фокус на массовые передачи данных и мгновенные перемещения данных в сети, стареющие трехуровневые конструкции в центрах обработки данных заменяются так называемым дизайном Leaf-Spine. Архитектура Leaf-Spine адаптируется к постоянно меняющимся потребностям компаний в отраслях big data с развивающимися центрами обработки данных. Другая модель Традиционная трехуровневая модель была разработана для использования в общих сетях. Архитектура состоит из Core маршрутизаторов, Aggregation маршрутизаторов (иногда этот уровень называется Distribution) и Access коммутаторов. Эти устройства взаимосвязаны путями для резервирования, которые могут создавать петли в сети. Частью дизайна является протокол Spanning Tree (STP) , предотвращающий петли, однако в этом случае деактивируется все, кроме основного маршрута и резервный путь используется только тогда, когда основной маршрут испытывает перебои в работе. Введение новой модели С конфигурацией Leaf-Spine все устройства имеют точно такое же количество сегментов и имеют предсказуемую и согласованную задержку информации. Это возможно из-за новой конструкции топологии, которая имеет только два слоя: слой «Leaf» и «Spine». Слой Leaf состоит из access коммутаторов, которые подключаются к таким устройствам как сервера, фаерволы, балансировщики нагрузки и пограничные маршрутизаторы. Уровень Spine, который состоит из коммутаторов, выполняющих маршрутизацию, является основой сети, где каждый коммутатор Leaf взаимосвязан с каждым коммутатором Spine. Чтобы обеспечить предсказуемое расстояние между устройствами в этом двухуровневом дизайне, динамическая маршрутизация уровня 3 используется для соединения уровней. Она позволяет определить наилучший маршрут и настроить его с учетом изменения сети. Этот тип сети предназначен для архитектур центров обработки данных, ориентированных на сетевой трафик типа «Восток-Запад» (East-West). Такой трафик содержит данные, предназначенные для перемещения внутри самого центра обработки данных, а не наружу в другую сеть. Этот новый подход является решением внутренних ограничений Spanning Tree с возможностью использования других сетевых протоколов и методологий для достижения динамической сети. Преимущества Leaf-Spine В Leaf-Spine сеть использует маршрутизацию 3го уровня. Все маршруты сконфигурированы в активном состоянии с использованием протокола равноудаленных маршрутов Equal-Cost Multipathing (ECMP) . Это позволяет использовать все соединения одновременно, сохраняя при этом стабильность и избегая циклов в сети. При использовании традиционных протоколов коммутации уровня 2, таких как Spanning Tree в трехуровневых сетях, он должен быть настроен на всех устройствах правильно, и все допущения, которые использует протокол Spanning Tree Protocol (STP), должны быть приняты во внимание (одна из простых ошибок, когда конфигурация STP связана с неправильным назначением приоритетов устройства, что может привести к неэффективной настройке пути). Удаление STP между уровнями Access и Aggregation приводит к гораздо более стабильной среде. Другим преимуществом является простота добавления дополнительного оборудования и емкости. Когда происходит ситуация перегрузки линков, которая называется oversubscription (что означает, что генерируется больше трафика, чем может быть агрегировано на активный линк за один раз) возможность расширять пропускную способность проста - может быть добавлен дополнительный Spine коммутатор и входящие линии могут быть расширены на каждый Leaf коммутатор, что приведет к добавлению полосы пропускания между уровнями и уменьшению перегрузки. Когда емкость порта устройства становится проблемой, можно добавить новый Leaf коммутатор. Простота расширения оптимизирует процесс ИТ-отдела по масштабированию сети без изменения или прерывания работы протоколов коммутации уровня 2. Недостатки Leaf-Spine Однако этот подход имеет свои недостатки. Самый заметный из них – увеличение количества проводов в этой схеме, из-за соединения каждого Leaf и Spine устройства. А при увеличении новых коммутаторов на обоих уровнях эта проблема будет расти. Из-за этого нужно тщательно планировать физическое расположение устройств. Другим основным недостатком является использование маршрутизации уровня 3.Ее использование не дает возможность развертывать VLAN’ы в сети. В сети Leaf-Spine они локализованы на каждом коммутаторе отдельно – VLAN на Leaf сегменте недоступен другим Leaf устройствам. Это может создать проблемы мобильности гостевой виртуальной машины в центре обработки данных. Применение Leaf-Spine Веб-приложения со статичным расположением сервера получат преимущество от реализации Leaf-Spine. Использование маршрутизации уровня 3 между уровнями архитектуры не препятствует приложениям веб-масштаба, поскольку они не требуют мобильности сервера. Удаление протокола Spanning Tree Protocol приводит к более стабильной и надежной работе сети потоков трафика East-West. Также улучшена масштабируемость архитектуры. Корпоративные приложения, использующие мобильные виртуальные машины (например, vMotion), создают проблему, когда сервер нуждается в обслуживании внутри центра обработки данных, из-за маршрутизации уровня 3 и отсутствие VLAN. Чтобы обойти эту проблему, можно использовать такое решение, как Software Defined Networking (SDN) , которое создает виртуальный уровень 2 поверх сети Leaf-Spine. Это позволяет серверам беспрепятственно перемещаться внутри центра обработки данных. Другие решения В качестве альтернативы маршрутизации уровня 3 топология Leaf-and-Spine может использовать другие протоколы, такие как Transparent Interconnection of Lots of Links (TRILL) или Shortest Path Bridging (SPB) для достижения аналогичной функциональности. Это достигается за счет сокращения использования Spanning Tree и включения ECMP уровня 2, а также поддержки развертывания VLAN между Leaf коммутаторами. Итог Сети Leaf-Spine предлагают множество уникальных преимуществ по сравнению с традиционной трехуровневой моделью. Использование маршрутизации 3-го уровня с использованием ECMP улучшает общую доступную пропускную способность, используя все доступные линии. Благодаря легко адаптируемым конфигурациям и дизайну, Leaf-Spine улучшает управление масштабируемостью и контролем над перегрузкой линий. Устранение протокола Spanning Tree Protocol приводит к значительному повышению стабильности сети. Используя новые инструменты и имея способность преодолевать присущие ограничения другими решениям, такими как SDN, среды Leaf-Spine позволяют ИТ-отделам и центрам обработки данных процветать при удовлетворении всех потребностей и потребностей бизнеса.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59