По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Друг, привет! В статье быстро расскажем о том, как настроить плату Digium TE122 для подключения цифрового Е1 потока. Погнали? Настройка Подключаемся к серверу IP – АТС Asterisk через консоль (CLI) и открываем следующий файл для редактирования - /etc/dahdi/system.conf . Указываем там следующие параметры: span=1,1,0,ccs,hdb3 bchan=1-15,17-31 dchan=16 Сохраняем изменения. Открываем файл /etc/asterisk/chan_dahdi.conf и указываем: group=0 signalling=pri_cpe switchtype=euroisdn context=incoming channel=1-15,17-31 Теперь посмотрим статус карты и ее ошибки следующей командой: dahdi_tool Откроется синий экран (схожий на mc). Внимательно прочитайте статус карты. Далее, перейдем в настройки chan_dahdi.conf. Открываем nano /etc/asterisk/chan_dahdi.conf и добавляем: [channels] language=ru busydetect=yes busycount=10 usecallerid=yes callwaiting=yes usecallingpres=yes threewaycalling=yes transfer=yes cancallforward=yes callreturn=yes echocancel=yes echocancelwhenbridged=no echotraining=no immediate=no faxdetect=no rxgain=0.0 txgain=0.0 Открываем в консоли файл /etc/asterisk/chan_dahdi_channels_custom.conf и добавляем туда: ;language=ru ;callwaiting=yes usecallingpres=yes ;pridialplan=unknown ;prilocaldialplan=unknown resetinterval = 100000000 facilityenable = yes usecallerid=yes cidsignalling=bell cidstart=ring hidecallerid=no sendcalleridafter=1 callwaitingcallerid=yes callerid = asreceived restrictcid = no threewaycalling=yes ;transfer=yes canpark=yes cancallforward=yes callreturn=yes echocancel=yes echocancelwhenbridged=yes ;echotraining=800 relaxdtmf=no ;switchtype=national ;signalling=pri_cpe ;group=0 ;context=from-pstn ;channels=>1-15,17-31 Выходим и сохраняем параметры. Перезагружаем демона Dahdi: /etc/init.d/dahdi restart Дело за малым – поправить диалплан. Открываем файл extensions_custom.conf и добавляем правила. Например: [test_context] exten => _X.,1,Dial(Dahdi/g0/${EXTEN},60,tT) Теперь для того чтобы заработали входящие и исходящие нужно добавить в FreePBX транк g0. Ну и сделать исходящую и входящую маршрутизацию.
img
Docker и Kubernetes - два ведущих инструмента, используемых в индустрии облачных вычислений. В то время как Docker - это компьютерное приложение, использующее концепцию контейнеризации, а Kubernetes - это система оркестровки контейнеров. Как правило, Docker и Kubernetes используются совместно друг с другом. Тем не менее, сравнение Kubernetes и Docker является чрезвычайно популярной темой в сообществе облачных вычислений. Прежде чем сравнивать две наиболее важные технологии облачных вычислений, давайте сначала кратко расскажем о каждой из них. Kubernetes Впервые выпущенный в июне 2014 года, Kubernetes был изначально разработан Google. За дальнейшую разработку и обслуживание системы оркестровки контейнеров с открытым исходным кодом отвечает Cloud Native Computing Foundation. Согласно официальному сайту, Kubernetes является «системой с открытым исходным кодом для автоматизации развертывания, масштабирования и управления контейнеризованными приложениями». Используя технологию контейнеризации, Kubernetes позволяет запускать контейнеры на нескольких вычислительных узлах, которые могут быть простыми серверами или виртуальными машинами. Перед использованием Kubernetes нужно перепроверить несколько вещей. Одним из них является обеспечение того, чтобы все участвующие вычислительные узлы были надежно связаны друг с другом. Docker Разработанная Docker, Inc., Docker была впервые выпущена в марте 2013 года. Это компьютерная программа, способная выполнять виртуализацию на уровне операционной системы, широко известную как контейнерная упаковка. Docker можно рассматривать в двух разных сторон. С первого взгляда контейнеры Docker - это действительно легкие виртуальные машины, а со второй точки зрения Docker - это платформа для упаковки и доставки программного обеспечения. Последний аспект в первую очередь ответственен за огромную популярность технологии контейнеризации Docker и ее широкое распространение в индустрии облачных вычислений. Можно ли сравнивать Docker и Kubernetes? Сравнивать Docker с Kubernetes - все равно что сравнивать Солнце с Луной. Конечно, оба небесных тела, но сравнение между ними не звучит правильно! Это потому, что, хотя оба сияют, один - звезда, а другой - естественный спутник. Хотя Docker может работать без Kubernetes, а Kubernetes может функционировать в полной мере без Docker, использование обоих в совместной работе улучшает функциональность друг друга. Docker может быть установлен на компьютере для запуска контейнерных приложений. Подход контейнеризации означает запуск приложений в операционной системе таким образом, чтобы они были изолированы от остальной части системы. Приложение будет чувствовать, что оно имеет свою собственную выделенную ОС. Несколько приложений могут работать в одной ОС, как если бы у каждого из них был свой экземпляр операционной системы. Каждое приложение находится внутри контейнера. Docker позволяет создавать, управлять и запускать контейнеры в одной операционной системе. Теперь, когда у вас установлен Docker на нескольких хостах, то есть на операционных системах, вы можете воспользоваться Kubernetes. В таком случае мы называем эти хосты узлами или узлами Docker, которые могут быть серверами с открытым исходным кодом или виртуальными машинами. Прелесть использования Kubernetes с Docker заключается в том, что он помогает автоматизировать балансировку нагрузки контейнера, создание сетей, выделение ресурсов, масштабирование и безопасность на всех хостах Docker с помощью отдельной панели мониторинга или интерфейса командной строки. Повышение масштабируемости приложений и повышение надежности инфраструктуры - две лучшие причины выбора нескольких узлов. Коллекция узлов, управляемых отдельным экземпляром Kubernetes, называется кластером Kubernetes. Kubernetes vs Docker Docker Swarm, про настройку которого можно прочитать тут - это платформа оркестрации контейнеров с открытым исходным кодом. Это собственный механизм кластеризации для Docker, и поэтому он использует ту же командную строку, что и Docker. Ниже приведены различные важные различия между Swarm и Kubernetes. Развертывание приложений Приложение развертывается в Kubernetes с использованием комбинации модулей и служб (или микросервисов). В Docker Swarm развертывание приложения происходит просто в виде микросервисов или сервисов в кластере Swarm. Docker Swarm поставляется с Docker Compose, который помогает в установке приложения. Для идентификации нескольких контейнеров в Docker Swarm есть файлы YAML (YAML Ain’t Markup Language). Настройка контейнера Хотя Docker Swarm API не поддерживает все команды Docker, он предлагает почти все лучшие функциональные возможности Docker. Итак, Docker Swarm поддерживает большинство инструментов, доступных для Docker. Однако, если Docker API не способен выполнять некоторые необходимые операции, не существует простого обходного пути для их использования в Docker Swarm. Как и Docker Swarm, Kubernetes имеет свою собственную версию API, определения клиентов и YAML. Тем не менее, они отличаются от их коллег Docker. Следовательно, нет возможности использовать Docker CLI или Docker Compose для определения контейнеров в Kubernetes. В случаях, когда необходимо переключить платформу, команды и определения YAML необходимо переписать. Балансировка нагрузки Как правило, Ingress используется для балансировки нагрузки в Kubernetes. Тем не менее, есть и другой способ, в котором модуль в Kubernetes выставляется через сервис и его можно использовать в качестве балансировщика нагрузки в кластере, к которому он принадлежит. Docker Swarm имеет DNS-элемент, который можно использовать для распределения входящих запросов по определенному имени службы. Для балансировки нагрузки службы могут быть назначены автоматически или настроены для работы на указанных пользователем портах. Сеть Kubernetes использует плоскую сетевую модель. Таким образом, все модули могут взаимодействовать друг с другом. Как будет происходить взаимодействие между модулями, определяется сетевыми политиками. Обычно модель плоской сети реализована в виде наложения. Модель плоской сети в Kubernetes требует две CIDR (Classless Inter-Domain Routing): один для сервисов, а другой - от которого модули получают IP-адрес. В Docker Swarm узел, присоединяющийся к кластеру Swarm, отвечает за генерацию оверлейной сети для сервисов, охватывающей каждый хост в кластере, и сети мостов Docker только для хостов для контейнеров. Docker Swarm дает пользователям возможность шифровать трафик контейнерных данных при создании оверлейной сети. Масштабируемость Kubernetes - это комплексная структура для распределенных систем. Поскольку он предлагает унифицированный набор API и надежные гарантии состояния кластера, Kubernetes является сложной системой. Эти способности отвечают за замедление развертывания и масштабирования контейнера. По сравнению с Kubernetes, Docker Swarm может развертывать контейнеры на гораздо более высокой скорости. Следовательно, это позволяет быстрее реагировать на масштабирование системы в соответствии с требованиями. Синергия между Docker и Kubernetes Kubernetes способен работать в тандеме с любой технологией контейнеризации. RKT и Docker являются двумя наиболее популярными опциями для механизма оркестровки контейнеров с открытым исходным кодом. Однако последний предпочтительнее, чем первый. Из-за большего предпочтения использования Docker с Kubernetes было приложено много усилий для совершенствования сотрудничества между этими двумя технологиями. Хотя Docker имеет свой собственный механизм оркестровки контейнеров в форме Docker Swarm, склонность к использованию Kubernetes с Docker нельзя не заметить. Это видно из того факта, что Docker for Desktop поставляется с собственным дистрибутивом Kubernetes. Следовательно, совершенно очевидно, что обе технологии, Docker и Kubernetes, объединили свои усилия и также извлекли большую пользу из этого сотрудничества.
img
Развитие компьютерных сетей проходит ошеломляющими темпами. Обилие устройств в компьютерных сетях порождает ряд проблем, таких, например, как необходимость объединять в отдельные изолированные подсети машины, которые подключены к различным коммутаторам. Иными словами, развитие сетей породило необходимость создания так называемых виртуальных локальных сетей, или VLAN. Что же такое виртуальная компьютерная сеть? VLAN дословно расшифровывается как Virtual Local Area Network, или виртуальная локальная сеть. По факту – это функция устройств связи, например, коммутаторов или маршрутизаторов, которая позволяет объединять устройства в одну или несколько виртуальных локальных подсетей в рамках одного физического сетевого интерфейса, такого как Wi-fi или Ethernet. Стоит отметить, что виртуальная логическая топология сети никак не пересекается с физической топологией и, соответственно, не зависит от нее. Несколько примеров использования виртуальной локальной сети Создание отдельных подсетей для групп устройств, подключенных к одному и тому же коммутатору: Если к одному коммутатору или маршрутизатору подключены несколько компьютеров в рамках одного офиса, то их можно разделить на отдельные подсети. Это актуально для малых предприятий, таких как, например, небольшая компания по разработке компьютерных игр. В этом случае будет рациональным объединить в отдельные подсети рабочие станции художников и программистов, поскольку обмен данными между сотрудниками одного отдела в рамках работы будет более эффективным. Специалисты каждого отдела будут видеть компьютеры только своей подгруппы, а руководители отделов, в свою очередь, будут объединены в свою сеть или подсеть, стоящую выше по сетевой иерархии. Создание виртуальной сети для устройств, подключенных к разным коммутаторам: Допустим, во взятой нами за пример компании по разработке компьютерных игр произошло расширение штата – наняли нескольких новых работников – программистов и художников. Их разместили в соседнем кабинете, и, соответственно, выделили им для работы свой коммутатор. В данном случае можно также создать виртуальные сети для отделов организации, в которых появились новые рабочие станции, даже если они физически подключены к другому коммутатору. В этом случае работники разных отделов не будут видеть в сети компьютеры сторонней группы, даже если они физически находятся в одном кабинете. Распределение Wi-fi сети для различных групп пользователей: Пусть в нашей организации стоит роутер, который физически имеет одну точку доступа Wi-fi. VLAN позволяет создать несколько виртуальных точек Wi-fi для разных отделов, в том числе отдельную гостевую точку доступа. Это удобно для руководства предприятия, так как позволяет проконтролировать расход трафика и выяснить, например, что программист Вася, вместо того чтобы писать код, смотрит в соцсетях фото с котиками. Да и для безопасности это также полезно – например, устройства подключаемые через гостевую точку доступа, не будут видеть рабочие компьютеры организации. Заключение Таким образом, к достоинствам VLAN можно отнести: Меньшее количество используемых для создания внутренней сети организации проводов (и меньше головной боли для сетевого администратора); Более безопасную и контролируемую связь между устройствами – рабочие станции в рамках одной подсети не будут «видеть» устройства из других подсетей; Более эффективное использование трафика в различных подсетях общей сети, за счет возможности управления трафиком в различных подгруппах; Повышение эффективности работы отделов через создание новых подгрупп устройств, для чего VLAN предоставляет широчайшие возможности;
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59