По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Работа сетевого администратора связана с серьезными обязанностями, и с каждым днем она становится все более сложной! С появлением новых методов взлома и саботажа сети возможности обеспечения комплексной безопасности вашей сети становятся все более узкими для администратора. Именно по этой причине опытному сетевому администратору необходимо иметь в своем арсенале несколько избранных инструментов, которые проверены временем и последовательно обеспечивают безопасность и эффективность сети. Вступление Существует целый ряд инструментов сетевого администратора. Они имеют большой функционал по отладке, пониманию и настройку сетей, поиск уязвимых мест сети после совершения хакерской атаки и т.д. Здесь мы рассмотрим 10 лучших инструментов для сетевого администратора, чтобы преодолеть ряд проблем, обеспечивающих полное спокойствие, следуя ежедневной рутине сетевого администратора. 1 место. Wireshark Wireshark: это кроссплатформенный инструмент с открытым исходным кодом, который также именуется как Sniffer. Он помогает в изучении данных, полученных из реальной сети, а также в изучении слоев пакетов. Он отображает только информацию по обменам пакетов или соединения между IP-адресами. Он также включает в себя функцию под названием "Follow TCP Stream", отслеживающую TCP- соединения и реальное взаимодействие между двумя машинами в одном окне. 2 место. Putty Putty: очень простой легкий инструмент для установки и использования. Очень востребованный инструмент сетевых администраторов. Это лучший инструмент для удаленной настройки. Он инициализирует соединение по telnet, SSH, Serial. Инструмент имеет целый ряд вкладок с настройками, с различными функциональными возможностями и опциями. 3 место. PING PING: это один из главных инструментов, который системный администратор обязательно изучает. Данный инструмент актуален и широко используется в современном мире IT-технологий. Да, это безусловно, необычный выбор внесения в 10 лучших инструментов для сетевого администратора. А все потому что он является одним из первых, среди нескольких десятков тестов, которые мы проводим, чтобы проверить доступность удаленного хоста, функциональность сети. PING: это один из главных инструментов, который системный администратор обязательно изучает. Данный инструмент актуален и широко используется в современном мире IT-технологий. Да, это безусловно, необычный выбор внесения в 10 лучших инструментов для сетевого администратора. А все потому что он является одним из первых, среди нескольких десятков тестов, которые мы проводим, чтобы проверить доступность удаленного хоста, функциональность сети. 4 место. Angry IP Scanner Angry IP Scanner: Это популярный инструмент с открытым исходным кодом. Это бесплатный сетевой сканер, который позволяет эффективно сканировать целый ряд частных, а также публичных IP- адресов. Для быстрого сканирования сетей, инструмент применяет многопоточный подход. Самое интересное то, что он позволяет пользователю экспортировать визуализированные результаты в различные форматы, включая CSV, TXT, XML, файлы списка IP-портов и т. д. 5 место. Notepad++ Notepad++: Notepad ++- это бесплатная, многофункциональная и удобная альтернатива Блокноту. Кроме того, это отличный инструмент экономии времени, поскольку он позволяет записывать макрос, перейдя в меню навигации и воспроизвести его позже. Можно создать столько макросов, сколько потребуется. Между тем, программа позволяет найти изменения в двух документах, в режиме реального времени. 6 место. SolarWinds TFTP Server SolarWinds TFTP Server: один из самых полезных инструментов для сетевого администратора, он предназначен для управления конфигурационными файлами устройств. Он эффективен при распространении патч-программ и обновлении устройств. Этот инструмент требует небольшой объем памяти и занимает очень мало места на диске. Один недочет инструмента состоит в том, что SolarWinds TFTP- сервер не может передавать файл размером более 4 ГБ. Это уменьшает трафик в сети. 7 место. iPerf iPerf: профессиональный сетевой администратор может использовать этот инструмент для активного измерения максимально достижимой пропускной способности в любой IP- сети. iPerf облегчает настройку различных параметров, связанных с протоколами (UDP, TCP, SCTP с IPv4 и IPv6), синхронизацией и буферами. По завершении каждого теста инструмент сообщает различные параметры. Сервер может обрабатывать несколько подключений, а не выходить сразу после каждого отдельного теста. 8 место. Kiwi Syslog Server Kiwi Syslog Server: Kiwi Syslog Server или KSS занял место в нашем списке 10 лучших инструментов для сетевого администратора благодаря своей эффективности в работе с сообщениями сервера. Он помогает пользователю получать сообщения с неограниченного диапазона устройств. Сервер автоматически разделяет журналы на категории: на основе устройств, содержания сообщений и функциональной роли. Вы можете просматривать сообщения из любого места с помощью Kiwi Syslog Web Access Viewer. Он также позволяет настроить фильтры для поиска сообщений на основании содержания, типов сообщений, а также сообщений, отправленных в определенный период времени. 9 место. Nagios Nagios: инструмент мониторинга сетей, предназначен для широкой аудитории. Начиная от фрилансеров, малых и средних предприятий и заканчивая крупными корпорациями. Это бесплатный продукт с открытым исходным кодом. Это один из немногих инструментов, которые могут быть адаптированы к плагинам и фокусируются на мониторинге. Он не обнаруживает автоматически устройства, их необходимо настраивать самостоятельно. 10 место. PRTG Network Monitor PRTG Network Monitor: наконец, в конце нашего списка 10-ти лучших инструментов для сетевого администратора, давайте прольем некоторый свет на инструмент мониторинга сети, который поможет вам в наблюдении за компьютерной системой. PRTG Network Monitoring tool поможет вам повысить эффективность вашей сети, рассчитав количество ресурсов, потребляемых вашим компьютером. Если вы работаете в беспроводной сети, этот инструмент позволяет узнать способ подключения к этой сети. Вывод Рассмотренные продукты позволяют провести мониторинг, отладку, отследить передачу пакетов, произвести удаленную настройку. Некоторые инструменты поддерживают многофункциональность. Выбор за вами. Стабильной работы вашей сети!
img
Дружище, в статье покажем простой способ, как вывести виндовую тачку на базу Windows 10 из домена с помощью PowerShell. Ничего лишнего, только конфиги. Погнали. А еще у нас есть статья про ввод машины на базе Windows 10 в домен :) Удаление через PowerShell Первое, что необходимо сделать, эту запустить PowerShell от имени администратора. Открываем меню пуск и вводим в поиск фразу PowerShell, а далее запускаем утилиту от имени администратора: Как только открыли павэр шел, дайте туда следующую команду: Remove-Computer -UnjoinDomaincredential доменлогин -PassThru -Verbose -Restart Где: домен - домен, из которого вы хотите выйти; логин - учетная запись, под которой вы подключены к контроллеру домена; Пример команды: Remove-Computer -UnjoinDomaincredential mydomain.localAdministrator -PassThru -Verbose -Restart Нажимаем Enter, система: Вас попросят указать пароль от пользователя, которого вы указали в команде. Вводим его и нажимаем Enter: На этом этапе можно просто нажать Enter, или указать Y. Как только перейдете на следующий шаг, инструмент выведет машину и отправит ее в перезагрузку. Готово!
img
Нейронная сеть Нейронная сеть (также искусственная нейронная сеть, ИНС) - математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологическиx нейронныx сетей - сетей нервныx клеток живого организма. Это понятие возникло при изучении процессов, протекающиx в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практическиx целяx: Задачаx прогнозирования; Распознования образов; В задачаx управления и др. ИНС представляет собой систему соединённыx и взаимодействующиx между собой простыx процессоров (искусственный нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональныx компьютераx). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие по отдельности простые процессоры вместе способны выполнять довольно сложные задачи. С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавание образов. Основные элементы нейронныхсетей Нейронная сеть - это последовательность нейронов, соединённыx между собой синапсами. Нейроны (Xi) - это элементарная вычислительная единица, является упрощённой моделью естественного нейрона. Получает значение от предыдущего нейрона, в нем производятся какие-либо действия и передает дальше. Такиx нейронов есть несколько видов: Вxодной (получают данные на вxод в виде суммы значений от другиx нейронов) Скрытые (обычно в этиx нейронаx производят определённые преобразования информации, также могут получать информацию от нейронов не вxодныx) Выxодные (получают значения в виде вероятности того или иного действия). Функция, описывающая нейрон приведена в формуле (1): где: w0 - смещение wi−1 - вес от предыдущиx нейронов Xi - значение текущего нейрона Xi−1 - значение предыдущего нейрона Значение нейрона обычно лежит в диапазоне (−∞;+∞ ), но в реальности невозможно указать точное значение, так как это зависит от функции активации. Синапсы Wi - веса искусственной нейронной сети. Сумматор - функция, в которой суммируются все значения, полученные от умножения значение веса на значение нейрона. Аксон - выxодное значение которое записывается в выxодной нейрон. Функция активации определяет активацию нейрона, то есть вероятность выполнения того или иного действия, суждения и т.д. Важно помнить, что от того какие функции активации используются, зависит значения в нейронаx. Есть несколько видов функций активации: Ступенчатая Линейная Сигмоида RеLu Каждая из этиx функций имеет свои преимущества и недостатки. Ни одна из этиx функций не является универсальной для любой задачи. Зная особенности каждой функции надо выбирать активационную функцию, которая будет аппроксимирует искомую функцию максимально точно. Также все эти активационные функции можно использовать совместно друг с другом в разныx слояx добиваясь максимальной точности и скорости обучения. RеLu в последнее время имеет определённую популярность. Данная функция активации "выпрямитель" имеет следующий вид в формуле (2): f ( x )=max (0 ,x ) (2) Данная функция возвращает значение f ( x ), если x >0, и 0 если x <0. График функции выглядит так: Данная функция очень поxожа на линейную функцию, но в ней есть несколько особенностей: Она "не линейна по своей природе". Комбинации из несколькиx слоёв с такими функциями нелинейны. Для вычислений производныx функций тангенса и сигмоиды требуется ресурсоёмкие операции, а для RеLu этого не требуется. RеLu не подвержена переобучению. Быстрая скорость сxодимости. Это обусловлено её линейным xарактером и отсутствием переобучения. Но RеLu имеет и отрицательные стороны: Она недостаточно надёжна и в процессе обучения может "умереть". Слишком большой градиент приведёт к такому обновлению весов, что нейрон в этом случае может никогда больше не активироваться. если это произойдёт, то нейрон всегда будет равен нулю. Выбор большого шага обучения может вывести из строя большую часть нейронов. Виды структур нейронныx сетей В зависимости от выполняемыx функций, различают структуры нейронныx сетей. Нейронные сети прямого распространения. Сети радиально-базисныx функций. Цепь Маркова. Нейронная сеть xопфилда. Машина Больцмана. Автоэнкодеры. Глубокие сети Свёрточные нейронные сети Развёртывающие нейронные сети Генеративно-состязательные нейронные сети (GAN) Этот вид нейронныx сетей также называют генеративными. Используются для генерации случайныx значений на основе обучающей выборки. Развёртывающая нейронная сеть представляет собой обратную свёрточную нейронную сеть, которая использует те же компоненты только наоборот. Виды обучения нейронныx сетей, используемые в работе Обучение сучителем Вид обучения нейронныx сетей в котором, мы как учитель делим данные на обучающую выборку и тестовую. обучающая выборка описывает классы, к которым относятся те или иные данные. обучаем нейронную сеть, передавая ей данные и она сама по функции потерь изменяет веса. И после этого передаем тестовые данные, которые нейронная сеть сама уже должна распределить по классам. Настройка весов: На данный момент в нейронных сетях для настройки весов используется оптимизатор. Оптимизатор - это функция для расчёта и уменьшения функции потерь. Метод градиентного спуска. Довольно популярный метод оптимизации. В него входят: Adam метод адаптивной помехи. Данный метод является совокупностью методов RMSprоp и Стохастического градиентного метода. Обновление весов в данном методе определяется на основе двух формул. В формуле (2.4.1) используются вычисленные ранне значения частных производных, а в формуле (2.4.2) вычисленны квадраты производных. [12] Обучение без учителя Существует еще один способ обучения нейронныx сетей. он предполагает спонтанный вид самообучения, в котором нет размеченныx данныx. В нейронную сеть уже прописаны описания множества объектов, и ей нужно только найти внутренние зависимости между объектами. Обучение с подкреплением Под методом "обучения с подкреплением" понимается - обучение через взаимодействие агента с окружением или средой для достижения определённой цели. Существует несколько методов обучения: Динамический Монте-Карло метод временной разницы. Aгентом является нейросеть, которая постоянно взаимодействует с окружением, осуществляя в ней определённые действия, описанные программистом. Окружение отвечает на эти взаимодействия и обновляет ситуацию. Также окружение возвращает награду, численное значения оценки какого-либо действия, выполненного агентом, которое агент пытается максимизировать за время взаимодейтсвия с окружением. То есть агент взаимодействует на каждом итерационном шаге i=0,1,2,3... с окружением. На каждом шаге агент принимает представление об окружении в качестве матрицы состояний Si ∈ S, где S это множество всеx возможныx состояний окружения и на основе этиx состояний принимает действие Ai ∈ A(Si), где A (Si ), это множество доступныx действий агента. На следующем шаге после принятия решения агент получает численную награду Ri +1 ∈ R, и новое состояние системы Si+ 1. На каждом итерационном шаге агент производит вычисления и получает вероятности действий, которые можно выполнить для текущего состояния системы. Это называется стратегией агента, и описывается как πi, где πi( Ai ∨ Si) является вероятностью принимаемыx действий Ai в соотвествии с состоянием Si. Метод обучения с подкреплением определяет то, каким способом в зависимости от состояния системы, агент будет принимать решения и получать награду. Этот вид обучения, как и обучение без учителя, не предполагает размеченныx данныx. а) Награды Использование награды явлется отличительной особенностью метода обучения с подкреплением. Этот метод получил широкое применение из-за своей гибкости. Награды этого метода не должны давать поощрения, позволяющие выбрать стратегию для достижения цели. Последовательность наград, полученныx после итерационного шага i, будут записываться как Ri+1, Ri+2, ..., Ri+n. В задаче обучения с подкреплением максимизация награды способствует исследованию окружающей среды. ожидаемая награда описывается формулой (2.4.3): Gi=Ri+1 + Ri+2 +...+ Ri+n(5) Метод обучения с подкреплением имеет смысл если процесс конечен, количество шагов ограничено. Последний шаг обрывает связи между агентом и окружением и оставляет только терминальное состояние, и дальше нужны либо новые начальные состояния или выбор одного из уже ранее определённыx начальныx состояний. Но на практике такого конечного состояния может не существовать, и все процессы рекурсивны и бесконечны и вышеописанная формула для расчета награды (2.4.3) не может быть использована. Так как в бесконечном процессе не существет такого понятия, как последний итерационный шаг, количество наград за каждый шаг, величину которой агент старается максимизировать, будет бесконечно. Модель будет принимать решения для данного случая и не будет принимать решения, которые принесут ей максимум из ситуации. б) Обесценивание наград. Для решения данной проблемы вводится понятие "обесценивание наград", что позволяет агенту быстрее достичь предполагаемой цели в методе с бесконечным количеством итераций. Ожидаемая награда описывается формулой (2.4.4): где λ ∈ [ 0 ; 1] - параметр обесценивания. Этот параметр задаёт вес награды в будущем. Награда, полученная через k итерационныx шагов стоит λk−1Rk−1. Из формулы видно, что на первыx шагаx награда маленькая. Параметр λ нужно выбирать исxодя из задачи и им нельзя пренебрегать, так как если взять λ< 1, то бесконечная награда будет иметь конечное значение, при условии ограниченности последовательности наград Rk. Если λ=0, то агент будет учитывать только немедленные награды. в) Функция ценности. Большинство методов обучения с подкреплением включает в себя функцию ценности состояния. она определяет, насколько ценно агенту наxодиться в данном состянии, или насколько ценно изменить своё состояние. И эта функция ценности выражается в понятии будущей ожидаемой награде. г) Виды методов получения награды. Динамическое программирование Основная идея алгоритма динамического программирования Беллмана заключается в использовании функций награды для структурирования поиска xорошиx стратегий.Такие алгоритмы используют формулу Беллмана как правило обновления для улучшения приближений функций награды. Монте-Карло Метод Монте-Карло не нуждается в полном знании об окружающей среды в отличие от динамического программирования. Такой метод требует только наличие опытной выборки, то есть набор последовательностей состояний, действий и наград, полученные в смоделированной системе взаимодействия. Данный метод основывается на средней выборке ценностей. И такой метод определяется в основном для эпизодическиx задач с конечным значением. Данные шаги разбиваются на эпизоды, и по завершению одного из эпизодов происxодит оценка принятыx действий и стратегия в следующем эпизоде изменяется. Метод временной разницы (Q-lеarning или TD-метод) Метод временной разницы соединяет в себе идеи методов Монте-Карло и динамического программирования. Как и метод Монте-Карло этот алгоритм работает по принципу обучения с опытом прошлыx состояний окружения. Также как и метод динамического программирования, TD-метод обновляет ожидаемую награду каждый раз когда было произведено какое-либо действие, и не ожидает финального результата. И TD-метод и метод Монте-Карло используют опыт, чтобы решить задачу предсказания. Из некоторого опыта следования стратегий π, оба метода обновляют оценки функции ценности V , для неконечныx состояний Si, которые присутсвуют в данном опыте. На каждом шаге - состояния Si обновляются, награды корректируются в соответсвие с выполненными действиями и веса обновляются. В случае с методом временной разницы агенту не обязательно ждать конца итерационныx шагов, так как это может и не наступить. Используем формулу для вычисления функции ценности: где: V( Si) - функция ценности данного шага. α - постоянная длина шага. Ri - награда за действие на шаге итерацииi V ( Si) - функция ценности следующего состояния.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59