По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитать лекцию №21 про беспроводную связь по 802.11 можно тут. В предыдущих лекциях мы рассмотрели два примера передачи данных вида point-to-point по физическим носителям. В этих лекциях будут рассмотрены четыре примера передачи данных вида end-to-end. На рисунке 1 показана Recursive Internet Architecture (RINA). Конечно, не каждый транспортный протокол точно сопоставляется с одним функциональным слоем в RINA, но сопоставление достаточно близко, чтобы быть полезным. Главное, что нужно запомнить-для каждого транспортного протокола есть четыре вопроса, которые вы можете задать: Как протокол обеспечивает передачу данных или как он упорядочивает данные? Как протокол предоставляет услуги мультиплексирования или возможность передавать несколько потоков данных на одном общем ресурсе? Как протокол обеспечивает контроль ошибок, который должен включать не только обнаружение ошибок, но и устранение ошибок - либо путем повторной передачи, либо путем предоставления информации, достаточной для восстановления исходной информации? Как протокол обеспечивает управление потоком? Каждый из этих вопросов может включать ряд дополнительных вопросов, таких как определение Maximum Transmission Unit (MTU), обеспечение репликации пакетов для многоадресной рассылки и т. д. В этих лекциях будут рассмотрены четыре протокола: Интернет-протокол (IP), который обеспечивает нижнюю половину второй пары слоев. Основное внимание при рассмотрении IP уделяется схеме адресации для мультиплексирования и способности обеспечивать единый способ передачи данных для множества различных физических транспортных систем. Протокол управления передачей (TCP), который обеспечивает одну версию верхней половины второй пары уровней. TCP обеспечивает управление ошибками и потоками, а также место для переноса информации о мультиплексировании для приложений и других протоколов, которые работают поверх TCP. Протокол Quick User Datagram Protocol Internet Connections (QUIC), который обеспечивает другую версию верхней половины второй пары уровней. QUIC очень похож на TCP по своим функциям, но имеет некоторые существенные отличия от TCP в том, как он работает. Протокол управляющих сообщений Интернета (ICMP). Internet Protocol (IP) Интернет-протокол (IP) был первоначально задокументирован в серии документов спецификации Интернет-протокола, называемых IEN, в середине 1970-х годов, в основном написанных Jonathan B. Postel. В этих документах описан протокол TCP, который при первоначальном развертывании включал в себя функции, содержащиеся в двух протоколах, IP и TCP. Postel отметил, что такое сочетание функциональности в едином протоколе не очень хорошо; Адресное пространство IPv4 представляет собой 32-битное целое число без знака, что означает, что оно может нумеровать или адресовать 232 устройства - около 4,2 миллиарда устройств. Звучит много, но на самом деле все иначе по нескольким причинам: Каждый адрес представляет один интерфейс, а не одно устройство. Фактически, IP-адреса часто используются для представления службы или виртуального хоста (или машины), что означает, что одно устройство часто будет использовать более одного IP-адреса. Большое количество адресов теряется в процессе агрегации. В начале 1990-х стало очевидно, что в Интернете скоро закончатся адреса в адресном пространстве IPv4; диаграммы, изображенные на рисунке 2, показывают изменение свободных и доступных IPv4 с течением времени, начиная с середины 1990-х годов. Простым решением этой ситуации было бы расширение адресного пространства IPv4 для охвата большего количества устройств, но опыт работы с протоколом IPv4 привел к тому, что группа Internet Engineering Task Force (IETF) взяла на себя более крупную задачу: перепроектировать IPv4. Работа по замене началась в 1990 году, а первые проекты получили статус стандарта в 1998 году. Адресное пространство IPv6 содержит 2128 адресов, или примерно 3,4 × 1038. IPv6 предназначен для предоставления услуг для нескольких различных протоколов, таких как TCP и QUIC. Таким образом, IPv6 предоставляет только две службы из четырех, необходимых для передачи данных по сети: транспорт, который включает маршалинг данных, и мультиплексирование. Транспорт и Маршалинг IP обеспечивает "базовый уровень", на котором работает широкий спектр протоколов более высокого уровня по множеству различных типов физических каналов. Для этого IP должен решить две проблемы: Запуск на множестве различных физических протоколов и протоколов нижнего уровня при одновременном представлении согласованного набора сервисов более высоким уровням. Адаптация к большому разнообразию размеров кадра, предоставляемых нижними уровнями Чтобы создать единый протокол, на котором могут работать все протоколы верхнего уровня, IP должен "вписываться" в тип кадра многих различных типов протоколов физического уровня. Ряд проектов описывает, как запустить IP поверх определенного физического уровня, включая сети MPEG-2, асинхронный режим передачи, оптические сети, протокол Point-to-Point (PPP), Vertical Blanking Interval (VBI) в телевидении, Fiber Distributed Data Interface (FDDI), и ряд других протоколов физического уровня. Эти проекты в значительной степени определяют, как переносить IP-дейтаграмму (или пакет) в кадре (или пакете) нижележащего физического уровня, и как включить межуровневое обнаружение, такое как протокол разрешения адресов (ARP), для работы с каждым типом носителя. IP также должен определять, как переносить большие блоки данных через различные MTU, доступные на разных типах физических каналов. В то время как исходная спецификация Ethernet выбирала MTU в 1500 октетов для баланса между большими размерами пакетов и максимальным использованием канала, многие другие физические уровни были разработаны с большими MTU. Кроме того, приложения не склонны отправлять информацию аккуратными блоками размером с MTU. IP решает эти две проблемы, обеспечивая фрагментацию. На рисунке 3 это показано. Если приложение (или протокол более высокого уровня) передает 2000 октетов данных для передачи в IP, реализация IP будет: Определите MTU вдоль пути, по которому должны передаваться данные; обычно это происходит путем считывания настроенного значения или значения по умолчанию, установленного системным программным обеспечением. Разбейте информацию на несколько фрагментов, основываясь на MTU минус прогнозируемый размер заголовков, включая заголовки туннелей и т. д.- метаданные, которые должны передаваться вместе с данными. Отправьте первый фрагмент с дополнительным заголовком IPv6 (что означает, что заголовок фрагмента не должен быть включен в пакеты, которые не являются фрагментами большего блока данных). Установите смещение в заголовке more fragments на первый октет исходного блока данных, который этот пакет представляет собой деление на 8; в Примере на рисунке 3 первый пакет имеет смещение 0, а второй-150 (1200/8). Установите бит more fragments равным 0, если это последний фрагмент блока данных, и 1, если за ним следует больше фрагментов. Этот размер общего блока данных, который IPv6 может переносить через фрагменты, ограничен размером поля смещения, которое составляет 13 бит. Следовательно, IPv6 может нести не более 214 октетов данных в виде последовательности фрагментов или блока данных размером около 65 536 октетов плюс один фрагмент размером с MTU. Все, что больше этого, должно быть каким-то образом разбито протоколом более высокого уровня перед передачей в IPv6 для транспортировки. Наконец, IP должен обеспечивать какой-то способ передачи пакетов по сети, использующей более одного типа физического уровня. Это решается путем перезаписи заголовков нижнего уровня на каждом этапе в сети, где могут быть взаимосвязаны несколько типов мультимедиа. Устройства, которые переписывают заголовки нижнего уровня таким образом, изначально назывались шлюзами, но теперь обычно называются маршрутизаторами, поскольку они направляют трафик на основе информации, содержащейся в заголовке IP. Есть и другие интересные аспекты того, как IPv6 передает данные. На рисунке 4 показан заголовок IPv6, с которым можно работать. На рисунке 4: Версия установлена на 6 для IPv6. traffic class разделен на два поля: 6 бит для передачи типа услуги (или класса услуги), 2 бита для передачи уведомления о перегрузке. flow label предназначена для указания устройствам пересылки, как хранить пакеты в одном потоке на одном и том же пути в наборе путей с многолучевым распространением с равной стоимостью (ECMP). payload length указывает количество данных, переносимых в пакете, в октетах. next header предоставляет информацию о любых дополнительных заголовках, содержащихся в пакете. Заголовок IPv6 может содержать информацию, выходящую за рамки того, что содержится в основном заголовке. hop limit - это количество раз, когда этот пакет может быть "обработан" сетевым устройством, прежде чем он будет отброшен. Любой маршрутизатор (или другое устройство), перезаписывающий заголовки нижнего уровня, должен уменьшить это число на единицу в процессе пересылки; когда предел перехода достигает 0 или 1, пакет следует отбросить. Важно! Счетчик скачков используется для предотвращения постоянного зацикливания пакета в сети. Каждый раз, когда пакет пересылается сетевым устройством, счетчик переходов уменьшается на единицу. Если счетчик переходов достигает 0, пакет отбрасывается. Если пакет зацикливается в сети, счетчик переходов (также называемый временем жизни или TTL) в конечном итоге будет уменьшен до 0, и пакет будет отброшен. Заголовок IPv6 представляет собой смесь переменной (Type Length Value [TLV]) и информации фиксированной длины. Основной заголовок состоит из полей фиксированной длины, но следующее поле заголовка оставляет открытой возможность дополнительных (или расширенных) заголовков, некоторые из которых форматируются как TLV. Это позволяет создавать пользовательские аппаратные средства (например, прикладную интегральную схему [ASIC]) для быстрого переключения пакетов на основе полей фиксированной длины, оставляя открытой возможность переноса данных переменной длины, которые могут быть обработаны только в программном обеспечении. Мультиплексирование IPv6 позволяет мультиплексировать двумя способами: Предоставляя большое адресное пространство для использования при идентификации хостов и сетей (или, в более широком смысле, достижимых пунктов назначения). Предоставляя пространство, в которое протокол верхнего уровня может поместить номер протокола, что позволяет нескольким протоколам работать поверх IPv6. Адресация IPv6 Адрес IPv6 имеет 128 битов, что означает, что может быть до 2128 адресов - огромное количество адресов, которых, возможно, хватит, чтобы сосчитать каждую крупицу пыли на Земле. Адрес IPv6 обычно записывается как последовательность шестнадцатеричных чисел, а не как последовательность из 128 нулей и единиц, как показано на рисунке 5. В формате IPv6 адреса стоит отметить двоеточие: Начальные нули в каждом разделе (выделены двоеточием) опускаются. Одну длинную строку нулей можно заменить двойным двоеточием в адресе только один раз. Почему так много адресов? Потому что многие адреса никогда не используются ни в одной схеме адресации. Во-первых, многие адреса никогда не используются, потому что адреса агрегируются. Агрегация - это использование одного префикса (или сети, или достижимого пункта назначения) для представления большего числа достижимых пунктов назначения. Рисунок 6 иллюстрирует это. На рисунке 6: Хостам A и B даны 101 :: 1 и 101 :: 2 в качестве их адресов IPv6. Однако эти два хоста подключены к одному широковещательному сегменту (например, Ethernet) и, следовательно, используют один и тот же интерфейс в C. Даже если C имеет адрес в этой общей сети, он фактически объявляет саму сеть - некоторые инженеры считают это полезно думать о самом проводе как о достижимом пункте назначения: 101 :: / 64. E получает два достижимых назначения, 101::/64 от C и 102::/64 от D. Уменьшая длину префикса, он может анонсировать одно достижимое назначение, которое включает в себя оба этих более длинных префиксных достижимых назначения. E рекламирует 100:: / 60. G, в свою очередь, получает 100 :: / 60 от E и 110: / 60 от F. Опять же, это же адресное пространство может быть описано с помощью единственного достижимого пункта назначения, 100 :: / 56, так что это то, что G объявляет. Как эта агрегация работает в реальном адресном пространстве? Рисунок 7 объясняет это. Длина префикса, которая представляет собой число после косой черты в reachable destination, сообщает вам количество битов, которые учитываются при определении того, что является частью префикса (и, следовательно, также, что нет). Длина префикса отсчитывается слева направо. Любой набор адресов с одинаковыми значениями чисел в пределах длины префикса считается частью одного и того же reachable destination. В полном адресном пространстве IPv6 128 бит, поэтому / 128 представляет один хост. В адресе с 64-битной длиной префикса (/ 64) только четыре левых раздела IPv6-адреса являются частью префикса или reachable destination; остальные четыре правые части IPv6-адреса считаются адресами хоста или подсети, которые "содержатся" в префиксе. В адресе с длиной префикса 60 бит (/ 60) четыре левых раздела IPv6-адреса минус одна шестнадцатеричная цифра считаются частью reachable destination или префикса. В адресе с длиной префикса 56 бит (/ 56) четыре левых раздела IPv6-адреса минус две шестнадцатеричные цифры считаются частью reachable destination или префикса. Пока вы всегда изменяете длину префикса с шагом 4 (/ 4, / 8, / 12, / 16 и т. Д.), значащие цифры или цифры, которые являются частью префикса, всегда будут перемещать единицу в вправо (при увеличении длины префикса) или влево (при уменьшении длины префикса). Агрегация иногда кажется сложной, но это важная часть IP. Некоторая часть адресного пространства используется при автоконфигурации. Важно учитывать взаимодействие между автоконфигурацией и назначением адреса IPv6. Как правило, необходимо выделить некоторый объем адресного пространства, чтобы гарантировать, что никакие два устройства, подключенные к сети, не будут иметь одинаковый идентификатор. В случае IPv6 половина адресных пространств (все, что больше / 64) в определенных диапазонах адресов выделяется для формирования уникальных идентификаторов для каждого устройства. В-третьих, некоторые адреса зарезервированы для специального использования. Например, в IPv6 следующие адресные пространства предназначены для специального использования: ::ffff / 96 зарезервирован для IPv4-адресов, которые "сопоставляются" с адресным пространством IPv6. fc00 :: / 7 зарезервирован для уникальных локальных адресов (ULA); пакеты с этими адресами не предназначены для маршрутизации в глобальном Интернете, а скорее хранятся в сети одной организации. fe80::/10 выделен для локальных адресов связи; эти адреса автоматически назначаются на каждом интерфейсе и используются только для связи по одному физическому или виртуальному каналу связи. :: / 0 устанавливается в качестве маршрута по умолчанию; если сетевое устройство не знает никакого другого способа добраться до определенного пункта назначения, оно будет перенаправлять трафик по маршруту по умолчанию. В-четвертых, устройствам может быть присвоено несколько адресов. Многие сетевые администраторы склонны думать об адресе так, как если бы он описывал один узел или систему. На самом деле, один адрес может быть использован для описания многих вещей, в том числе: Один хост или система Единый интерфейс на хосте или в системе; хост с несколькими интерфейсами будет иметь несколько адресов Набор доступных сервисов на хосте или системе; например, виртуальной машине или конкретной службе, работающей на хосте, может быть назначен адрес, отличный от любого из адресов, назначенных интерфейсам хоста. Не существует необходимой прямой корреляции между адресом и физическим устройством или между адресом и физическим интерфейсом. Мультиплексирование между процессами Второй механизм мультиплексирования позволяет нескольким протоколам работать на одном и том же базовом уровне. Эта форма мультиплексирования обеспечивается через номера протоколов. Рисунок 8 демонстрирует это. next header заголовка либо указывает на: next header в пакете IPv6, если есть next header Номер протокола, если next header является транспортным протоколом (например, TCP). Эти дополнительные заголовки называются дополнительными или расширенными заголовками; некоторые из них имеют фиксированную длину, а другие основаны на TLV; например: Параметрах Hop-by-hop: набор TLV, описывающих действия, которые должно предпринять каждое устройство пересылки. Маршрутизации: набор типов маршрутов фиксированной длины, используемых для указания пути, по которому пакет должен пройти через сеть. Фрагмент: набор полей фиксированной длины, содержащий информацию о фрагменте пакета. Заголовок аутентификации: набор TLV, содержащих информацию аутентификации и / или шифрования. Jumbogram: необязательное поле длины данных, позволяющее пакету IPv6 нести на один байт менее 4 ГБ данных. next header имеет длину 8 бит, что означает, что оно может содержать число от 0 до 255. Каждое число в этом диапазоне присваивается либо определенному типу заголовка опции, либо конкретному протоколу более высокого уровня. Например: 0: next header -это опция IPv6 hop-by-hop. 1: Полезная нагрузка пакета - это протокол Internet Control Message Protocol (ICMP). 6: Полезная нагрузка пакета-TCP. 17: Полезная нагрузка пакета - это UDP. 41: Полезная нагрузка пакета-IPv6. 43: next header - это routing header IPv6 44: next header -это fragment header IPv6 50: next header -это Encapsulated Security Header (ESH). Номер протокола используется принимающим хостом для отправки содержимого пакета правильному локальному процессу для обработки; обычно это означает удаление заголовков нижнего (физического) уровня из пакета, помещение пакета во входную очередь для правильного процесса (например, TCP), а затем уведомление операционной системы о том, что соответствующий процесс должен быть запущен.
img
В этой статье мы познакомим вас с популярной профессией DevOps-инженера и расскажем, что он делает, как им стать, где искать работу и – самое главное – сколько можно зарабатывать. В отличие от некоторых модных карьерных направлений, которые появляются и исчезают, DevOps — это область, которая была и будет востребованной.  Согласно прогнозам , к концу 2023 года рынок DevOps вырастет до невероятных $10.3 млрд, так что получение должности DevOps-инженера — это ваш первый шаг к долгосрочной карьере. Если вам нужна работа, сочетающая технологии и творческий подход, то должность DevOps-инженера — это для вас! В этой статье расскажем, как стартовать в этой сфере и что о ней следует знать. Кто такой DevOps-инженер Это специалист, на чьих плечах лежит ответственность за совершенствование и автоматизацию процессов разработки и эксплуатации программного обеспечения. Проще говоря, это методология, объединяющая разработку (Dev) и эксплуатацию (Ops) в разработке программного обеспечения с акцентом на скорость и качество. Задача DevOps-инженера состоит в том, чтобы наладить коммуникацию и сотрудничество между этими двумя направлениями. Что делает DevOps-инженер DevOps-инженер отвечает за создание инструментов, улучшающих процессы разработки, повышение производительности, надежности и безопасности программных продуктов. Ключевые области занятости devops-инженера включают в себя:  автоматизацию развертывания и масштабирования систем, управление инфраструктурой как кодом (IaC), непрерывную поставку и интеграцию (CI/CD), мониторинг и логирование, управление конфигурацией и изменениями, работу с облачными платформами и микросервисной архитектурой. Где работать DevOps-инженеру DevOps-инженеры востребованы в различных сферах и отраслях. Они могут работать как в крупных корпорациях, так и в стартапах, где процессы разработки носят более гибкий и динамичный характер. DevOps-подход активно внедряется в современных IT-компаниях, разработчиками облачных решений, а также в корпоративных IT-отделах.  Профессионал в этой области может работать как в операционных подразделениях, так и в команде разработки ПО. Необходимые навыки для DevOps-инженера Помните, что DevOps — это не просто набор инструментов или название должности. Это группа скиллов, в которой особое внимание уделяется командной работе, коммуникации и автоматизации. Рассказываем подробнее о каждом из них: навыки программирования: специалист должен обладать опытом в программировании на языках, таких как Python, Ruby, Go, Java, Rust, C и C++. Проще говоря, он должен уметь писать код, который автоматизирует процессы разработки и операционной работы. навыки работы с системами контроля версий: DevOps-инженер должен знать, как работать с системами контроля версий, такими как Git. Он также отвечает за управление конфигурацией серверов и инфраструктуры. навыки работы с облачными технологиями: специалист должен уметь работать с AWS, Azure или Google Cloud. Он должен уметь настраивать инфраструктуру в облаке и управлять ресурсами. навыки автоматизации: DevOps-инженеру требуется автоматизировать процессы разработки и операционной работы. Он должен знать, как настроить CI/CD-пайплайны, тестирование и деплоймент. навыки мониторинга и логирования. DevOps-инженер должен уметь анализировать логи и метрики, чтобы быстро реагировать на проблемы. навыки коммуникации. Специалист должен уметь общаться с разработчиками, тестировщиками и операторами. Он должен быть готов к сотрудничеству, давать понятные ТЗ и уметь объяснять сложные технические вопросы простым языком. В рамках DevOps вы будете участвовать во всем цикле разработки ПО — от планирования до внедрения. Как правило, работа в качестве DevOps начинается с должности начального уровня, например, релиз-менеджера или младшего инженера. По мере накопления опыта внедрения инструментов и процессов, можно вырасти: и стать DevOps-инженером, архитектором или системным инженером.  Чтобы построить карьеру в качестве DevOps, вам потребуется техническое образование в области информатики или информационных технологий, а также понимание Linux, веб-разработки и Java. Поскольку DevOps охватывает весь жизненный цикл программного обеспечения, вместо того чтобы сосредоточиться на одной области, инженеры DevOps работают над оптимизацией каждого этапа процесса. Это означает, что они будут решать множество задач в день, попутно находя точки роста для продукта. Плюсы и минусы профессии DevOps-инженера Поскольку  86% организаций считают необходимым быстро разрабатывать новое программное обеспечение, вклад DevOps в компанию очень большой. Давайте рассмотрим, какие плюсы у этой работы есть для вас как для сотрудника: 1. Высокий спрос на рынке труда: инженеры востребованы во многих компаниях, в том числе и зарубежных. Именно поэтому DevOps стала  такой популярной методологией разработки во всем мире. 2. Высокая зарплата: DevOps-инженеры могут получать от 70 до 600 тысяч рублей — доход всегда растет вместе с умениями и опытом. 3. Большой выбор инструментов: DevOps-инженеры могут использовать широкий спектр инструментов для автоматизации и управления процессами. 5. Быстрый рост в карьере: при условии постоянного обучения и оттачивания технических скиллов DevOps-инженер может продвигаться по карьерной лестнице, не сидя годами на одной зарплате.  К тому же, эта роль предполагает работу с другими техническими специалистами, фреймворками, языками программирования, так что вы получите глубокое понимание экосистемы DevOps — и это тоже поможет росту в долгосрочной перспективе. Минусы: 1. Высокие требования к знаниям и навыкам. DevOps-инженеру необходимо постоянно обучаться и развиваться, чтобы оставаться востребованным. 2. Большая ответственность. DevOps-инженер отвечает за автоматизацию процессов разработки и операционной работы, что может повлечь за собой серьезные последствия в случае ошибки или сбоя.. 3. Необходимость быстро реагировать. Специалист должен быть готов к быстрому реагированию на изменения в проекте или системе, чтобы ничего не «рухнуло».  4. Высокая конкуренция. Чтобы получить работу DevOps-инженером, понадобится подтвердить свои технические навыки и софт-скиллы. Поможет и обучение в техническом ВУЗЕ или на  профильных курсах . 5. Овертаймы или необходимость работать ночью. В некоторых случаях DevOps-инженер может столкнуться с тем, что ему придется выходить в ночные смены, чтобы обеспечить бесперебойную работу системы, либо задерживаться на работе. Такие моменты можно обсудить с руководством и договориться о дополнительной оплате. DevOps-инженер: зарплата и вакансии Зарплата DevOps-инженера в России может значительно варьироваться в зависимости от опыта работы, компании, региона и других факторов.  По данным HeadHunter , средняя зарплата DevOps-инженера в России составляет около 130 000 — 150 000 рублей в месяц. В Москве и Санкт-Петербурге зарплаты могут быть выше и составлять от 150 000 до 200 000 рублей в месяц.  Учитывайте, что зарплата может зависеть от уровня опыта и квалификации.  Новички в этой области могут начинать с зарплаты 70 000 — 80 000 рублей в месяц, тогда как опытные DevOps-инженеры могут зарабатывать  более 250 000 рублей в месяц. Как стать DevOps-инженером с нуля Будущее профессии DevOps-инженера выглядит блестящим. Возможно, после прочтения статьи вам показалось, что нужно обладать огромным количеством навыков для обучения этой профессии. Но это не так: начать карьеру DevOps-инженера с нуля можно и даже нужно! Важно выбирать учебные программы, которые охватывают не только основы DevOps, но и практику применения современных инструментов автоматизации, управления конфигурацией и работы с облачными платформами. У нас есть курс  «DevOps-инженер с нуля» , где вы научитесь использовать инструменты и методы DevOps для автоматизации тестирования, сборки и развертывания кода, управления инфраструктурой и ускорения процесса доставки продуктов в продакшн. Что в итоге У IT-компаний, которые наращивают скорость и эффективность DevOps, сочетая его с другими технологиями, есть потенциал стать лидерами — как в плане технологий, так и в плане доверия клиентов. DevOps-инженер способен повысить качество выпускаемого ПО, улучшить его безопасность и наладить отношения с пользователями. Карьерные возможности, высокие зарплаты и постоянно растущий рынок труда делают профессию привлекательной для тех, кто стремится растить свои навыки в IT.  Помните, что единственный способ продвинуться в любой карьере — постоянно быть в курсе последних тенденций и технологий в этой области. Это не только поможет вам быть в курсе новостей сферы, но и поможет получить лучшую работу и зарплату.
img
OSPF (Open Shortest Path First) – дословно переводится как «Сперва открытый короткий путь» - надежный протокол внутренней маршрутизации с учетом состояния каналов (Interior gateway protocol, IGP). Как правило, данный протокол маршрутизации начинает использоваться тогда, когда протокола RIP уже не хватает по причине усложнения сети и необходимости в её легком масштабировании. OSPF наиболее широко используемый протокол внутренней маршрутизации. Когда идёт речь о внутренней маршрутизации, то это означает, что связь между маршрутизаторами устанавливается в одном домене маршрутизации, или в одной автономной системе. Представьте компанию среднего масштаба с несколькими зданиями и различными департаментами, каждое из которых связано с другим с помощью канала связи, которые дублируются с целью увеличения надежности. Все здания являются частью одной автономной системы. Однако при использовании OSPF, появляется понятие «площадка», «зона» (Area), которое позволяет сильнее сегментировать сеть, к примеру, разделение по «зонам» для каждого отдельного департамента. Видео: протокол OSPF (Open Shortest Path First) за 8 минут Для понимания необходимости данных «зон» при проектировании сети, необходимо понять, как OSPF работает. Есть несколько понятий, связанных с этим протоколом, которые не встречаются в других протоколах и являются уникальными: Router ID: Уникальный 32-х битный номер, назначенный каждому маршрутизатору. Как правило, это сетевой адрес с интерфейса маршрутизатора, обладающий самым большим значением. Часто для этих целей используется loopback интерфейс маршрутизатора. Маршрутизаторы-соседи: Два маршрутизатора с каналом связи между ними, могут посылать друг другу сообщения. Соседство: Двухсторонние отношения между маршрутизаторами-соседями. Соседи не обязательно формируют между собой соседство. LSA: Link State Advertisement – сообщение о состоянии канала между маршрутизаторами. Hello сообщения: С помощью этих сообщений маршрутизаторы определяют соседей и формируют LSA Area (Зона): Некая иерархия, набор маршрутизаторов, которые обмениваются LSA с остальными в одной и той же зоне. Зоны ограничивают LSA и стимулируют агрегацию роутеров. OSPF – протокол маршрутизации с проверкой состояния каналов. Представьте себе карту сети – для того, чтобы ее сформировать, OSPF совершает следующие действия: Сперва, когда протокол только запустился на маршрутизаторе, он начинает посылать hello-пакеты для нахождения соседей и выбора DR (designated router, назначенный маршрутизатор). Эти пакеты включают в себя информацию о соседях и состоянии каналов. К примеру, OSPF может определить соединение типа «точка-точка», и после этого в протоколе данное соединение «поднимается», т.е. становится активным. Если же это распределенное соединение, маршрутизатор дожидается выбора DR перед тем как пометить канал активным. Существует возможность изменить Priority ID для, что позволит быть уверенным в том, что DR-ом станет самый мощный и производительный маршрутизатор. В противном случае, победит маршрутизатор с самым большим IP-адресом. Ключевая идея DR и BDR (Backup DR), заключается в том, что они являются единственными устройствами, генерирующими LSA и они обязаны обмениваться базами данных состояния каналов с другими маршрутизаторами в подсети. Таким образом, все не-DR маршрутизаторы формируют соседство с DR. Весь смысл подобного дизайна в поддержании масштабируемости сети. Очевидно, что единственный способ убедиться в том, что все маршрутизаторы оперируют одной и той же информацией о состоянии сети – синхронизировать БД между ними. В противном случае, если бы в сети было 35 маршрутизаторов, и требовалось бы добавить еще одно устройство, появилась бы необходимость в установлении 35 процессов соседства. Когда база централизована (т.е существует центральный, выбранный маршрутизатор - DR) данный процесс упрощается на несколько порядков. Обмен базами данных – крайне важная часть процесса по установлению соседства, после того как маршрутизаторы обменялись hello-пакетами. При отсутствии синхронизированных баз данных могут появиться ошибки, такие как петли маршрутизации и т.д. Третья часть установления соседства – обмен LSA. Это понятие будет разобрано в следующей статье, главное, что необходимо знать – нулевая зона (Area 0) особенная, и при наличии нескольких зон, все они должны быть соединены с Area 0. Так же это называется магистральной зоной. Типы маршрутизаторов OSPF Разберем различные типы маршрутизаторов при использовании протокола OSPF: ABR Area Border Router – маршрутизатор внутри нулевой зоны, через который идет связь с остальными зонами DR, BDR Designated Router, Backup Designated Router – этот тип маршрутизаторов обсуждался выше, это основной и резервирующий маршрутизаторы, которые ответственны за базу данных маршрутизаторов в сети. Они получают и посылают обновления через Multicast остальным маршрутизаторам в сети. ASBR Autonomous System Boundary Router – этот тип маршрутизаторов соединяет одну или несколько автономных систем для осуществления возможного обмена маршрутами между ними. Подведем итоги OSPF является быстро сходящимся протоколом внутренней маршрутизации с контролем состояния каналов Процесс соседства формируется между соседними маршрутизаторами через DR и BDR, используя LSA Зоны в данном протоколе маршрутизации используются для ограничения LSA и суммирования маршрутов. Все зоны подключаются к магистральной зоне.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59