По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Давно прошли те времена, когда «база данных» представляла собой единую СУБД на основе реляционной модели данных, которую обычно устанавливали на самом мощном сервере в центре обработки данных. Такая база данных могла обслуживать все виду запросов – OLTP (On-Line Transaction Processing – обработка транзакций в режиме реального времени), OLAP (On-Line Analytical Processing – аналитическая обработка данных в режиме реального времени) – все, что нужно для бизнеса. В настоящее время базы данных работают на самом обычном оборудовании, они также стали более сложными с точки зрения высокой доступности и более специализированными для обработки определенного типа трафика. Специализация позволяет добиться гораздо большей производительности баз данных – все оптимизировано для работы с определенным типом данных: оптимизатор, механизм хранения, даже язык может быть не SQL, как это бывает обычно. Он может быть основан на SQL с некоторыми расширениями, которые позволяют более эффективно манипулировать данными, или может быть чем-то абсолютно новым, созданным с нуля. На сегодня мы имеем аналитические столбчатые базы данных, такие как ClickHouse или MariaDB AX, платформы обработки и анализа больших данных, такие как Hadoop, решения NoSQL, такие как MongoDB или Cassandra, хранилища данных типа «ключ-значение», такие как Redis. Мы также имеем базы данных временных рядов, такие как Prometheus или TimeScaleDB. Это именно то, на чем мы акцентируем внимание в данной статье. Базы данных временных рядов (Time Series Databases) – что это такое и зачем вам нужно еще одно хранилище данных в своей среде. Для чего нужны базы данных временных рядов? Как видно из названия, базы данных временных рядов предназначены для хранения данных, которые изменяются со временем. Это могут быть абсолютно любые данные, собранные с течением времени. Это могут быть метрические показатели, собранные из некоторых систем – все системы трендов являются примерами данных временных рядов. Каждый раз, когда вы смотрите на информационные панели в ClusterControl, на самом деле вы видите визуальное представление временных рядов, хранящихся в Prometheus – базе данных временных рядов. Временные ряды не ограничиваются метрическими показателями базы данных. Метриками может быть что угодно – изменение потока людей, входящих в торговый центр, с течением времени, изменение трафика в городе, использование общественного транспорта в течение дня, течение воды в реке или ручье, количество энергии, вырабатываемое водной установкой – все это и все остальное, что можно измерить во времени, является примером временных рядов. Такие данные можно запросить, построить, проанализировать, чтобы найти корреляционную зависимость между различными метриками. Структура данных в базе данных временных рядов Как вы понимаете, самая важная составляющая данных в базе данных временных рядов – это время. Существует два основных способа хранения данных. Первый способ чем-то похож на хранилище «ключ-значение» и выглядит так: Метка времени Метрика 1 2019-03-28 00:00:01 2356 2019-03-28 00:00:02 6874 2019-03-28 00:00:03 3245 2019-03-28 00:00:04 2340 Проще говоря, для каждой метки времени имеется некоторое значение метрики. Второй способ подразумевает хранения большего числа показателей. Вместо того, чтобы хранить каждую метрику в отдельной таблице или коллекции, их можно хранить вместе. Метка времени Метрика 1 Метрика 2 Метрика 3 Метрика 4 Метрика 5 2019-03-28 00:00:01 765 873 124 98 0 2019-03-28 00:00:02 5876 765 872 7864 634 2019-03-28 00:00:03 234 7679 98 65 34 2019-03-28 00:00:04 345 3 598 0 7345 Такая структура данных, когда все метрики связаны, позволяет более эффективно запрашивать данные. Вместо того, чтобы читать несколько таблиц и объединять их для получения всех метрик, достаточно прочитать лишь одну единственную таблицу, чтобы подготовить данные к обработке и представлению. У вас может возникнуть вопрос – что же здесь нового? Чем эта база данных отличается от обычной таблицы в MySQL или в любой другой реляционной базе данных? Да, действительно, конструкция таблиц очень похожа. Однако есть существенные различия в рабочей нагрузке, которые могут существенно повысить производительность, если хранилище данных предназначено для использования такого рода таблиц, Временные ряды, как правило, только растут. Маловероятно, что вы будете обновлять старые данные. Чаще всего строки в таблице не удаляются, однако вам может понадобиться какая-то агрегация данных с течением времени. Если принять это при проектировании внутреннего устройства базы данных, то этот факт будет иметь существенное расхождение в сравнении со «стандартными» реляционными (и не реляционными) базами данных, предназначенными для обработки транзакций в режиме реального времени. Что здесь является наиболее важным, так это способность последовательно хранить большие объемы данных, поступающих со временем. Можно, конечно, использовать РСУБД для хранения временных рядов, но она не оптимизирована для этого. Данные и индексы, сгенерированные на ее основе, могут стать слишком большими, и запросы будут проходить очень медленно. Механизмы хранения данных, используемые в СУБД, предназначены для хранения различных типов данных. Обычно они оптимизированы для рабочей нагрузки обработки транзакций в режиме реального времени, которая включает в себя частое изменение и удаление данных. В реляционных базах данных также часто отсутствуют специализированные функции и функции, предназначенные для обработки временных рядов. Мы уже упоминали, что вы вероятно столкнетесь с необходимостью агрегировать данные, полученные ранее какой-то временной метки. Вы также можете иметь возможность легко запускать некоторые статистические функции для ваших временных рядов, чтобы сглаживать их, определять и сравнивать тренды, интерполировать данные и многое другое. Здесь, например, вы можете найти некоторые функции, которые Prometheus предоставляет пользователям. Примеры баз данных временных рядов На рынке существует множество баз данных временных рядов, поэтому, естественно, что рассмотреть все мы не сможем. Но мы все же хотели привести несколько примеров баз данных временных рядов, которые, возможно, вам уже знакомы или которые вы уже, возможно, используете (сознательно или нет). InfluxDB InfluxDB была разработана компанией InfluxData. Это база данных временных рядов с открытым исходным кодом, написанная языке программирования Go. Хранилище данных позволяет вводить запросы данных на языке, подобном SQL, что позволяет разработчикам легко интегрировать эту базу данных в свои приложения. InfluxDB также может работать как часть коммерческого решения, которое охватывает весь стек, предназначенный для обеспечения процесса обработки данных временных рядов, полнофункциональной высоко доступной средой. Prometheus Prometheus – это еще один проект с отрытым исходным кодом, который также написан на языке программирования Go. Он обычно используется в качестве серверной части для различных инструментов и проектов с открытым исходным кодом, например, Percona Monitoring and Management. Prometheus также является наилучшим вариантом для ClusterControl. Prometheus можно развернуть из ClusterControl с целью хранения данных временных рядов, собранных на серверах баз данных, контролируемых и управляемых ClusterControl: Prometheus широко используется в мире Open Source, поэтому его довольно легко интегрировать в уже существующую среду с помощью нескольких экспортеров. RRDtool Это один из примеров базы данных временных рядов, которую многие используют, даже не подозревая об этом. RRDtool – это достаточно популярный проект с открытым исходным кодом для хранения и визуализации временных рядов. Если вы хоть раз использовали Cacti, то и RRDtool вы тоже использовали. Если вы разработали свое собственное решение, вполне вероятно, что и здесь вы тоже использовали RRDtool в качестве серверной части для хранения данных. Сейчас RRDtool, возможно, не так популярен, как это было в 2000-2010 годах. В те годы это был самый распространенный способ хранения временных рядов. Забавный факт – ранние версии ClusterControl использовали именно RRDtool. TimeScale TineScale – это база данных временных рядов, разработанная на основе PostgreSQL. Это расширение для PostgreSQL, которое использует основное хранилище данных для предоставления доступа к ним, что означает, что оно поддерживает все разновидности SQL, доступные для использования. Поскольку это расширение, то оно использует все функции и расширения PostgreSQL. Вы можете совмещать временные ряды с другими типами данных, например, объединять временные ряды с метаданными, пополняя информацией выходные данные. Вы также можете выполнить более сложную фильтрацию, используя JOIN и таблицы без временных рядов. Геоинформационное обеспечение в PostgreSQL TimeScale можно использовать для отслеживания географических местоположений с течением времени, а также использовать все возможности масштабирования, предлагаемые PostgreSQL, включая репликацию. Timestream Amazon Web Services также предлагает базы данных временных рядов. О Timestream было объявлено совсем недавно, в ноябре 2018 года. Она добавляет еще одно хранилище данных в портфель AWS, помогая пользователям обрабатывать временные ряды, поступающие из таких источников, как устройства Интернет вещей или отслеживаемые сервисы. Его также можно использовать для хранения метрических данных, полученных из журналов, созданных несколькими службами. Это позволяет пользователям выполнять аналитические запросы к ним, помогая понять закономерности и условия, в которых работают службы. Tiemstream, как и большинство сервисов AWS, обеспечивает простой способ масштабирования в случае, если с течением времени возрастает потребность в хранении и анализе данных. Как видите, вариантов баз данных временных рядов на рынке множество, и это не удивительно. В последнее время, все более популярным становится анализ временных рядов, поскольку он становится все более важных для различных бизнес-операций. К счастью, есть большое количество проектов как с открытым кодом, так и коммерческих. И с большой долей вероятности вы сможете найти инструмент, который полностью удовлетворит ваши потребности.
img
В этой статье мы рассмотрим настройку BGP-оповещения для Network Layer Reachability Information (NLRI), а также конфигурацию политики маршрутизации BGP. Предыдущие статьи цикла про BGP: Основы протокола BGP Построение маршрута протоколом BGP Формирование соседства в BGP Видео: Основы BGP за 7 минут Оповещения NLRI Прежде чем мы начнем настраивать оповещения NLRI, используя различные команды, давайте сначала обсудим старую функцию BGP, которую Cisco отключает по умолчанию. Эта функция называется синхронизацией BGP. Для проверки того, что Cisco отключила эту функцию на вашем устройстве, выполните команду show running-configuration на одном из устройств BGP, и в выводимой информации, под пунктом «процессы» BGP, вы увидите сообщение no synchronization. Если эта функция включена, функция синхронизации не позволяет спикеру BGP вводить префиксы в BGP, если нет коррелированной записи для префикса в базовом IGP (или статических маршрутах). Это помогает предотвратить ситуации типа "черная дыра" (black hole), когда устройства на маршруте не работают с BGP и не могут переадресовать префикс BGP, потому что у них нет маршрута к этому префиксу из их IGP. Эта функция отключена по умолчанию из-за создания множества различных механизмов масштабируемости, существующих в BGP, которые позволяют настроить топологию iBGP без требования полной сетки одноранговых узлов iBGP. Еще одна причина, по которой он отключен, заключается в том, что он поощряет перераспределение префиксов BGP в базовый IGP, и это не безопасно. Существует причина, по которой Cisco уходит от использования команды network для настройки IGPs в CLI. Не очень хорошая идея в программировании, чтобы одна команда выполняла очень разные вещи, и когда она используется в разных областях. Это относится и к команде network. При использовании в IGP команда включает протокол на интерфейсе (а также влияете на то, какие префиксы объявляются), но в BGP у команды network другое назначение. Она не включает BGP на определенных интерфейсах, вместо этого она объявляет префикс, который существует (каким-то образом) на локальном устройстве, и вводит его в BGP. Хотя префикс, который вы могли бы объявить в BGP, чаще всего встречается в вашем IGPs в таблице маршрутизации. Вы можете использовать другие методы для создания префикса для оповещения. Например, вы можете создать интерфейс обратной связи, который обладает префиксом сети, который вы хотите объявить. Или вы можете создать статический маршрут или даже статический маршрут, указывающий на Null0. Одна маленькая хитрость, связанная с командой network в BGP, заключается в том, что, если ваша маска подсети для вашего префикса не находится на классовой границе IP- адреса (например, 10.0.0.0/8), то вам нужно не забыть использовать ключевое слово mask и указать правильную маску при использовании команды. Пример 1 показывает создание двух петлевых интерфейсов и объявление их префиксов в BGP. Обратите внимание, что этот пример также показывает проверку этих префиксных объявлений на маршрутизаторе ATL. Пример 1: Использование команды Network в BGP TPA1#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)#interface loopback 192 TPA1(config-if)#ip address 192.168.1.1 255.255.255.0 TPA1(config-if)#exit TPA1(config)#interface loopback 172 TPA1(config-if)#ip address 172.16.10.1 255.255.255.0 TPA1(config-if)#exit TPA1(config)router bgp 100 TPA1(config-router)#network 192.168.1.0 TPA1(config-router)#network 172.16.10.0 mask 255.255.255.0 TPA1(config-router)#end TPA1# ATL# ATL#show ip bgp Хотя команда network проста и удобна, она не была бы эффективной, если бы у вас было много префиксов для оповещения. Другой вариант- перераспределить префиксы в BGP из IGP или статических маршрутов. Пример 2 демонстрирует перераспределение префиксов, которые были получены через EIGRP, в BGP. Обратите внимание при проверке, что исходный код для этих префиксов отображается как (?) указывает на неизвестность. Пример 2: перераспределение префиксов в BGP TPA1#configure terminal Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)router bgp 100 TPA1(config-router)#redistribute eigrp 100 TPA1(config-router)#end TPA1# ATL#show ip bgp Когда вы начинаете объявлять (оповещать) NLRI в BGP, вы можете столкнуться с префиксами в вашей таблице BGP (показанной с show ip bgp), которые имеют код состояния (r) вместо ожидаемого допустимого кода состояния (*). Код состояния (r) указывает на сбой RIB, означающий, что BGP попытался поместить префикс в таблицу BGP, но не смог из- за какой-то проблемы. Наиболее распространенной причиной отказа RIB является административное расстояние (AD). Например, IBGP узнал префиксы несущие ужасные объявления AD из 200. Это означает, что если ваш маршрутизатор получил префикс через IGP (даже такой плохой, как RIP с AD 120), то он будет предпочтительнее префикса IBGP. В результате протокол BGP получивший это объявление AD, не отметит префикс как действующий. Обратите внимание, что это, как правило, не происходит с префиксами EBGP-learned, поскольку они имеют очень предпочтительное объявление 20 (по умолчанию). Очень часто, если желательно иметь префикс в IGP и BGP, администраторы будут манипулировать значениями AD на своих маршрутизаторах, чтобы улучшить AD IBGP. Например, в случае RIP и BGP администратор мог бы установить AD изученных маршрутов IBGP на 119, чтобы сделать их предпочтительными по сравнению с используемым IGP. В дополнение к выявлению сбоев RIB в результатах команды show ip bgp, вы можете использовать более прямую команду show ip bgp rib-failure, чтобы увидеть любые префиксы в этом состоянии. Это особенно полезно в случае массивных таблиц BGP. Настройка политики маршрутизации BGP Довольно часто встречаются топологии, в которых вы явно не хотите объявлять префиксы в своей таблице BGP, или вы не хотите получать определенные префиксы от узла BGP. К счастью, в вашем распоряжении есть много инструментов для этого. Например, вот только некоторые методы, которые вы могли бы использовать для фильтрации префиксов: Distribute lists Extended ACLs Prefix lists AS Path filters Route maps Пример 3 демонстрирует один из методов фильтрации. Выбран подход route map, потому что все (и это правильно) любят карты маршрутов. Пример 3: Использование route map в качестве префиксного фильтра в BGP ATL# configure terminal Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#ip access-list standard MYPREFIX ATL(config-std-nacl)#permit 192.168.1.0 0.0.0.255 ATL(config-std-nacl)#exit ATL(config)#route-map MYMAP deny 10 ATL(config-route-map)#match ip address MYPREFIX ATL(config-route-map)#exit ATL(config)#route-map MYMAP permit 20 ATL(config-route-map)#exit ATL(config)#router bqp 200 ATL(config-router)#neighbor 10.10.10.1 route-map MYMAP in ATL(config-router)#end ATL# ATL# clear ip bqp * soft ATL# show ip bqp Обратите внимание, перед проверкой я запускаю команду clear ip bgp * soft. Это гарантирует, что устройство сразу же обновит информацию BGP для меня, так что мне не придется ждать истечения таймера, когда дело дойдет до конвергенции BGP на новых манипуляциях с политикой, которые мы сделали. Помните, что BGP использует множество различных атрибутов пути вместо простой метрики, чтобы предоставить вам возможность легко настроить способ, по которому происходит маршрутизация. Ниже приведены некоторые из атрибутов пути, которыми вы могли бы манипулировать, чтобы настроить политику: Weight MED Local Preference AS Path Можно спросить себя, как AS Path могут быть использованы в целях маршрутизации. Поскольку манипуляция AS Path часто выполняется с помощью AS Path Prepending. Вы отравляете префикс, добавляя свой собственный номер AS к пути, чтобы сделать более длинным (менее предпочтительным) AS Path. Как и большинство наших манипуляций с атрибутом пути, это легко сделать с помощью карты маршрута. Давайте рассмотрим пример использования Local Preference для манипулирования политикой. Мы часто используем Local Preference, чтобы повлиять на то, как мы будем направлять исходящий трафик к префиксу BGP. Мы делаем это, устанавливая значения Local Preference, входящие по нескольким путям. Прежде чем мы начнем, поймите, что Local Preference - это значение, которое рассматривается довольно высоко в процессе принятия решения о наилучшем пути BGP, более высокое значение предпочтительно, и значения передаются только в обновлениях IBGP. Именно так имя LOCAL вошло в название Local Preference. Для начала я объявил тот же префикс в AS 200 (ATL и ATL2) от маршрутизаторов TPA1 и TPA2 AS 100. Глядя на пример 4, Вы можете видеть, что этот префикс (192.168.1.0) может быть достигнут с помощью следующего прыжка 10.10.10.1 и что это предпочтительный путь. Альтернативный путь, который будет использоваться в случае неудачи этого пути, будет проходить через следующий переход 10.21.21.1. Пример 4: Подготовка к использованию Local Preference ATL# show ip bqp Теперь пришло время поэкспериментировать и изменить данное поведение с помощью примера манипуляции атрибутом пути. Мой подход будет состоять в том, чтобы определить префикс, которым мы хотим манипулировать (192.168.1.0), и поднять значение локального предпочтения, чтобы оно было больше, чем значение по умолчанию 100 для пути к TPA2 на следующем прыжке 10.21.21.1. Я делаю это, манипулируя префиксом, когда он входит через путь 10.21.21.1 . Пример 5 показывает эту конфигурацию. ATL# configure terminal Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#ip access-list standard OURPREFIX ATL(config-std-nacl)#permit 192.168.1.0 0.0.0.255 ATL(config-std-nacl)#exit ATL(config)#route-map SETLOCALPREF permit 10 ATL(config-route-map)#match ip address OURPREFIX ATL(config-route-map)#set local-preference 110 ATL(config-route-map)#exit ATL(config)#route-map SETLOCALPREF permit 20 ATL(config-route-map)#exit ATL(config)#router bqp 200 ATL(config-router)#neighbor 10.21.21.1 route-map SETLOCALPREF in ATL(config-router)#end ATL# ATL# clear ip bqp * soft ATL# show ip bqp Обратите внимание, что предпочтительный путь теперь проходит через следующий переход 10.21.21.1, как мы и хотели. Для этого префикса также отображается значение Local Preference - 110. Это более высокое значение является предпочтительным и изменяет выбор, сделанный процессом выбора наилучшего пути BGP.
img
Firebase - это платформа для разработки приложений, запущенная в 2012 году и двумя годами позже приобретенная Google. Изначально Firebase задумывалась как база данных для приложений реального времени, но Google увидел ее потенциал и решил добавить к ней дополнительные сервисы. В настоящее время Firebase представляет собой систему BaaS (Backend as as Service) для упрощения создания веб-приложений и мобильных приложений с 18 службами. Среди компаний, использующих услуги BaaS Firebase, - Accenture, Alibaba Travels, Stack, Twitch и Instacart, а также более 2300 других. Преимущества использования Firebase Первой из услуг, предлагаемых Firebase, была база данных в реальном времени, и она остается одной из самых привлекательных. Real-time базы данных Firebase размещаются в облаке, хранят данные в формате JSON и синхронизируются в реальном времени с каждым подключенным к ним клиентом. Независимо от того, используете ли вы iOS SDK, Android SDK или JavaScript SDK, все приложения, подключенные к Realtime базе данных Firebase, совместно используют один экземпляр базы данных, всегда работают с последними данными. Cloud Firestore - еще один интересный сервис Firebase. Это NoSQL база данных документов, предназначенная для облегчения хранения, синхронизации и выполнения запросов для мобильных и веб-приложений в глобальном масштабе. Создание иерархий для хранения связанных данных и запросов для получения данных позволяет полностью реализовать потенциал Cloud Firestore. В свою очередь, запросы масштабируются в зависимости от размера результатов, а не от размера набора данных. Это позволяет приложениям масштабироваться с самого начала, не дожидаясь момента, когда запрашиваемые ресурсы превысят имеющиеся. В дополнение к вышеупомянутым службам баз данных Firebase также предлагает услуги хостинга, хранилища файлов, функции (в стиле AWS Lambda) и многое другое. Создание API API-интерфейсы - это способ предоставления услуг для использования вашими собственными или сторонними приложениями. Firebase позволяет предоставлять настраиваемые службы, которые, в свою очередь, используют собственные службы Firebase, без необходимости настраивать серверную часть для этих служб. Вы можете, например, предложить доступ к базе данных Firebase в реальном времени для сторонних приложений для запроса информации, собираемой промышленными датчиками. Первым шагом в создании API в Firebase является доступ к консоли Firebase и добавление проекта, нажав «Добавить проект» (Add project) и присвоив название новому проекту. Google предоставит вам возможность включить Google Analytics для вашего нового проекта. Рекомендуется принять эту рекомендацию, так как вы получите такие преимущества, как A/B-тестирование и широкий спектр статистических отчетов относительно вашего API. После создания проекта вы сможете выбрать службы Firebase, которые будет использовать ваш API. Чтобы проиллюстрировать эту задачу, мы разберём, как использовать службу базы данных Firebase Realtime. Настройка базы данных реального времени в Firebase На панели навигации слева в разделе «Разработка» (Develop) щелкните «Realtime Database». Справа появится кнопка «Create Database». Нажмите на нее, чтобы создать свою первую базу данных в Firebase. Затем вам нужно будет выбрать один из нескольких вариантов географического местоположения для вашей новой базы данных. Выберите тот, который ближе всего к вашим пользователям. Это важный аспект для минимизации задержки вашего API, особенно для приложений реального времени. Следующим шагом является настройка основных правил безопасности для вашей базы данных. Вы можете выбрать заблокированный режим, а затем назначить права доступа по мере необходимости или выбрать тестовый режим, который разрешает все операции чтения и записи. Для начала, чтобы не усложнять свою жизнь настройками безопасности, можно выбрать тестовый режим. А правила безопасности можете настроить позже. Как только вы закончите настройку своей базы данных, соответствующий API также будет добавлен в разделе API and Services в консоли Google Cloud Platform. Программирование Firebase API На данный момент у вас уже есть основные элементы вашего проекта, настроенные в консоли Firebase. Следующим шагом будет написание кода API. Для этого вам нужно будет инициализировать хостинг и функции Firebase на вашем локальном компьютере. Вы можете установить firebase-tools с помощью npm: npm install -g firebase-tools Затем вы можете войти в firebase и инициализировать свой проект с помощью следующих команд: firebase login firebase init Отобразится экран приветствия, в котором Firebase укажет папку папке, в которой будет храниться ваш проект, и появится меню параметров. В этом меню выберите Functions and Hosting (опция «Хостинг» позволит вам иметь собственный URL-адрес для API). Затем выберите из списка приложение Firebase, которое вы создали ранее, после чего вы должны выбрать язык для использования. Для разработки веб-API вы можете выбрать JavaScript. Если вы будете использовать зависимости пакетов, установите их с помощью npm внутри папки функций. Затем вы можете начать писать код для своих функций. Не забудьте включить пакеты firebase-functions и firebase-admin наряду с другими пакетами, которые вам нужны: import * as functions from 'firebase-functions'; import * as admin from 'firebase-admin'; Чтобы использовать базу данных в реальном времени, вы должны указать ее URL при инициализации вашего JavaScript SDK. URL-адрес находится в разделе Realtime Database консоли Firebase. Вы можете узнать его по формату: https://<database-name>.<region>.firebasedatabase.app Вы можете использовать следующий фрагмент кода для инициализации вашего SDK, заменяя данные на свои: var config = { apiKey: "apiKey", authDomain: "projectId.firebaseapp.com", databaseURL: "https://databaseName.firebaseio.com", storageBucket: "bucket.appspot.com" }; firebase.initializeApp(config); var database = firebase.database(); После того, как написали код функции API, пора приступить к развертыванию. Но перед этим нужно будет внести некоторые изменения в firebase.json, добавив следующие строки, измененные в соответствии с конфигурацией нашего проекта: "rewrites": [ { "source": "/api/v1/**", "function": "webApi" } ] Следующий шаг - развертывание. В первый раз нужно выполнить полное развертывание, выполнив команду: firebase deploy При последующих развертываниях вы сможете развертывать только функции, используя параметр –only functions. После выполнения команды Firebase CLI в терминале отобразит URL-адреса HTTP эндпоинтов ваших функций, которые вы можете использовать для вызова ваших API-интерфейсов из веб-приложения. URL-адрес содержит идентификатор вашего проекта и регион для функции HTTP. Например, следующий URL-адрес можно использовать для вызова функции запроса элемента, передав его itemid = 1 в качестве параметра: https://us-central1-apiproject-8753c.cloudfunctions.net/itemQuery?itemid=1 Чтобы выполнить функцию, откройте URL-адрес с соответствующими параметрами в браузере. Обратите внимание, что для развертывания в производственной среде требуется подписка на план Firebase Blaze. Данный план снимает деньги по мере использования, о чем вы можете прочитать на странице цен на Firebase. Это услуга выставляет счет по факту использования, что означает, что вам выставляется счет за использование в конце каждого месяца. Если у вас нет подписки на Blaze, команда развертывания не отобразит URL-адрес для API. Вместо этого вы увидите сообщение, информирующее о том, что вы должны подписаться на план Blaze, если вы хотите выполнить развертывание в среде выполнения. В этом случае вы все равно можете использовать Firebase Local Emulation Suite для создания и тестирования приложений на локальном компьютере вместо их развертывания в производственной среде Firebase. Локальное тестирование полезно, чтобы избежать ненужных затрат во время разработки приложения, поскольку каждый запуск теста может приводить к расходам на вашем счете. Локальное тестирование и прототипирование Инструмент Local Emulator Suite предлагает интегрированный пользовательский интерфейс, который делает упрощает создание прототипов и тестирование ваших приложений на локальном компьютере. С помощью пользовательского интерфейса Emulator Suite вы можете тестировать проекты своей базы данных, рабочие процессы облачных функций, анализировать производительность серверных служб и оценивать изменения в правилах безопасности и пр. По сути, это безопасная песочница для проверки функциональности вашего API перед отправкой в производственную среду. Чтобы эмулировать свои функции или протестировать приложение локально, запустите эмуляторы firebase: start. Чтобы использовать эмулятор Firestore, на компьютере должна быть установлена Java. При вызове Firestore Emulator, команда вернет URL-адрес, который позволит вам открыть пользовательский интерфейс Emulator Suite в вашем браузере. По умолчанию этот URL-адрес будет localhost: 4000, но он может отличаться на каждой машине. Вы также получите полный URL-адрес своей функции HTTP. Этот URL будет выглядеть примерно так: http://localhost:5001/apiproject-8753c/us-central1/itemQuery Только он будет иметь имя вашего проекта, имя вашей функции, а также может иметь другой номер порта на вашем локальном компьютере. Чтобы протестировать функцию, скопируйте URL-адрес, возвращаемый эмулятором, добавив все необходимые параметры (например, ?itemid = 1), и откройте в новой вкладке браузера. Результаты выполнения API появятся в пользовательском интерфейсе Emulator Suite. На вкладке «Logs» вы увидите новые логи, указывающие, что функция itemQuery() была выполнена. Если ваша функция генерирует новые данные в базе данных Firestore, вы увидите их на вкладке Firestore. Расширение возможностей вашего API Если вы хотите, чтобы разрабатываемые вами API стали популярными, Firebase может помочь и с этим. Не только потому, что это позволяет вам быстрее создавать приложение, снимая много работы по настройке и запуску серверных сервисов, но также помогая вам в позиционировании вашего продукта. Как такое возможно? Просто потому, что приложения, связанные с Firebase, занимают более высокие позиции в поисковом рейтинге, чем другие приложения. Также примите во внимание API индексирования приложений Firebase. Этот инструмент улучшает поисковый рейтинг ссылок приложений и помогает пользователям находить желаемый контент. Он также помещает кнопку "Установить" после кнопки на главной странице вашего приложения, чтобы заинтересованные пользователи всего за один клик могли пользоваться вашим приложением. В заключение отметим, что Firebase не только предлагает услуги бэкэнда, которые значительно ускоряют разработку собственного API, но и помогает продвигать его и зарабатывать на этом деньги.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59