По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Графовые базы данных (Graph databases) – это нереляционные системы (NoSQL), которые определяют корреляции между сложно взаимосвязанными сущностями. Такая структура позволяет обойти ограничения реляционных БД и уделяет больше внимания отношениям между данными. Графовая база данных позволяет аккуратно определять взаимосвязи и дает ответы на сложные вопросы о том, как точки данных соотносятся друг с другом. В данной статье объясняется, что такое графовые базы данных, и как они работают. Но для начала можно быстро познакомиться с другими видами NoSQL. Что такое графовая база данных? Графовая база данных – это нереляционный тип баз данных, основанный на топографической структуре сети. Идея этой БД восходит к математической теории графов. Графы представляют наборы данных в виде узлов, ребер и свойств. Узлы, или точки (nodes) – это экземпляры или сущности данных; ими является любой объект, который вы планируете отслеживать. Например, люди, заказчики, подразделения и т.д. Ребра, или линии (edges) – это важнейшие концепции в графовых БД. Они отображают взаимосвязь между узлами. Эти связи имеют направление и могут быть одно- или двунаправленными. Свойства (properties) содержат описательную информацию, связанную с узлами. В некоторых случаях свойства бывают и у ребер. Узлы с пояснительными свойствами создают взаимосвязи, представленные через ребра. Графовые БД предлагают концептуальное представление данных, тесно связанных с реальным миром. Моделировать сложные связи гораздо проще, поскольку отношениям между точками данных уделяется такое же внимание, как и самим данным. Сравнение графовых и реляционных баз данных Графовые БД не создавались для замены реляционных БД. Стандартом отрасли на текущий момент считаются реляционные БД. Но перед этим важно понять, что может предложить та или иная разновидность систем. Реляционные базы данных обеспечивают структурированный подход к данным, а графовые БД считают более гибкими и ориентированы на быстрое понимание взаимосвязей между данными. Графовые и реляционные БД имеют свою область применения. Сложные взаимосвязи лучше реализовать через графовые БД, поскольку их возможности превосходят традиционные реляционные СУБД. При создании моделей баз данных в реляционных системах MySQL или PostgreSQL требуется тщательное планирование, а в графовых используется более естественный и гибкий подход к данным. В таблице ниже приведены ключевые отличия между графовыми и реляционными БД: Тип Графовые БД Реляционные БД Формат Узлы и ребра со свойствами Таблицы со строками и столбцами Связи Представлены в виде ребер между узлами Создаются с помощью внешних ключей между таблицами Гибкость Гибкие Жестко заданные Сложные запросы Быстрые и отзывчивые Необходимы сложные соединения Варианты использования Системы с взаимосвязанными зависимостями Системы с транзакциями и более простыми отношениями Как работают графовые базы данных? Графовые базы данных одинаково относятся к данным и взаимосвязям между ними. Связанные узлы физически связываются, и эта связь рассматривается как часть данных. При таком моделировании данных вы можете запрашивать взаимосвязи также, как и сами данные. Вместо вычисления и запросов на подключение, графовые БД считывают взаимосвязи напрямую из хранилища. По гибкости, производительности и адаптивности графовые БД близки к другим нереляционным моделям данных. В них, как и в других нереляционных БД, отсутствуют схемы, что делает данную модель гибкой и легко изменяемой. Примеры использования графовых баз данных Есть много примеров, когда графовые БД превосходят все прочие методы моделирования данных. Среди таких примеров можно выделить: Рекомендательные сервисы в режиме реального времени. Динамичные рекомендации по продуктам и электронным товарам улучшают пользовательский опыт и максимизируют прибыль. Из известных компаний можно упомянуть Netflix, eBay и Walmart. Управление основными данными. Привязка всех данных к одной общей точке обеспечивает постоянство и точность данных. Управление основными данными крайне важно для крупномасштабных компаний мирового уровня. GDPR и соблюдение нормативных требований. С графами гораздо проще управлять безопасностью и отслеживать перемещение данных. Базы данных снижают вероятность утечки информации и обеспечивают большую согласованность при удалении данных, чем повышается общее доверие к конфиденциальной информации. Управление цифровыми ресурсами. Объем цифрового контента просто огромен и постоянно растет. Графовые БД предлагают масштабируемую и простую модель данных, позволяющую отслеживать цифровые ресурсы: документы, расчеты, контракты и т.д. Контекстно-зависимые сервисы. Графы помогают в предоставлении сервисов, приближенных к актуальным характеристиками мира. Будь то предупреждения о стихийных бедствиях, информация о пробках или рекомендации по товарам для конкретного местоположения, – графовые базы данных предлагают логическое решение для реальных обстоятельств. Выявление мошенничества. Поиск подозрительных закономерностей и раскрытие мошеннических платежных схем выполняется в режиме реального времени. Выявление и изоляция частей графа позволяет быстрее обнаружить мошенническое поведение. Семантический поиск. Обработка естественного языка бывает неоднозначной. Семантический поиск помогает определить значение ключевых слов и выдает более подходящие варианты, которые, в свою очередь проще отобразить с помощью графовых БД. Сетевое управление. Сети – это не что иное, как связанные графы. Графовые БД снижают время, необходимое для оповещения сетевого администратора о проблемах в сети. Маршрутизация. Информация передается по сети за счет поиска оптимальных маршрутов, и это делает графовые БД идеальным вариантом для маршрутизации. Какие есть известные графовые базы данных? С ростом больших данных и аналитики в соцсетях популярность графовых БД возрастает. Моделирование графов поддерживает множество многомодельных БД. Кроме того, доступно много нативных графовых БД. JanusGraph JanusGraph – это распределенная, масштабируемая система графовых БД с открытым кодом и широким набором возможностей по интеграции и аналитике больших данных. Ниже приведен перечень основных функций JanusGraph: Поддержка ACID-транзакций с возможностью одновременного обслуживания тысяч пользователей Несколько вариантов хранения графических данных, включая Cassandra и HBase Встроенный сложный поиск, а также дополнительная (опциональная) поддержка Elasticsearch Полная интеграция Apache Spark для расширенной аналитики данных JanusGraph использует полный по Тьюрингу язык запросов для обхода графов Neo4j Neo4j (Network Exploration and Optimization 4 Java, что переводится как «исследование сети и оптимизация для Java») – это графовая база данных, написанная на Java с нативным хранением и обработкой графов. Основные возможности: Масштабируемость БД за счет разделения данных на части – сегменты Высокая доступность благодаря непрерывному резервному копированию и последовательным обновлениям Высокий уровень безопасности: несколько экземпляров баз данных можно разделить, оставив их на одном выделенном сервере Neo4j использует Cypher – язык запросов для графовых БД, который очень удобен для программирования DGraph DGraph (Distributed graph, что переводится как «распределенный граф») – это распределенная система графовых БД с открытым исходным кодом и хорошей масштабируемостью. Вот несколько интересных возможностей DGraph: Горизонтальная масштабируемость для работы в реальной среде с ACID-транзакциями DGraph – это свободно распространяемая система с поддержкой множества открытых стандартов Язык запросов – GraphQL, который был разработан для API DataStax Enterprise Graph DataStax Enterprise Graph – это распределенная графовая БД на базе Cassandra. Она оптимизирована под предприятия. Несколько функций: DataStax обеспечивает постоянную доступность для корпоративных нужд База данных легко интегрируется с автономной платформой Apache Spark Полная интеграция аналитики и поиска в реальном времени Масштабируемость за счет наличия нескольких центров обработки данных Поддержка Gremlin и CQL для запросов Плюсы и минусы графовых баз данных В каждом типе баз данных есть свои плюсы и минусы. Именно поэтому так важно понимать отличия между моделями и доступные возможности для решения конкретных проблем. Графовые БД – это развивающаяся технология с целями, отличными от других типов БД. Плюсы Вот несколько плюсов графовых баз данных: Гибкая и адаптивная структура Четкое представление взаимосвязей между сущностями Запросы выводят результаты в реальном времени. Скорость зависит от количества связей Минусы Ниже перечислены основные минусы системы: Отсутствует стандартизированный язык запросов. Язык зависит от используемой платформы Графы не подходят для систем на основе транзакций Небольшая база пользователей; при возникновении проблема сложно получить поддержку Заключение Графовые базы данных – это отличный подход для анализа сложных отношений между объектами данных. Быстрота запросов и результаты в режиме реального времени хорошо вписываются в требования современных и стремительно растущих исследований данных. Графы – это развивающаяся технология, которую ждет еще много улучшений.
img
Итак, вы хотите стать DevOps-инженером? Это впечатляющий, сложный и высокооплачиваемый вариант карьеры, но такая ключевая роль объединяет разработку программного обеспечения и его эксплуатацию. Мы составили дорожную карту DevOps, которая включает в себя все шаги, которые необходимы для того, чтобы занять место эксперта DevOps. Как вы знаете, DevOps – это набор практик и инструментов для интеграции и автоматизации процессов между IT-командами и командами разработчиков программного обеспечения. Поэтому он фокусируется на общении и сотрудничестве между командами, используя лучшие инструменты автоматизации, доступные для повышения эффективности. Следующий акцент делается на объединении тех, кто работает в области разработки программного обеспечения с развертыванием ПО, а также на обеспечении высокого уровня структурной и технической поддержки. Это все означает, что DevOps-инженеры должны знать свое дело, чтобы справиться с этой неподъемной задачей. А что же тогда такое «их дело»? Оказывается, что это не просто их дело, но и дело всех остальных. Конечно, это может звучать, как что-то невероятное, что мало кто может преодолеть. DevOps-инженеры действительно являются экспертами высокого уровня, и стать одним из них также практически невозможно. Вместе с тем, данное руководство поможет вам четко понять, какие шаги необходимо предпринять, прежде чем начать свое путешествие по DevOps. Давайте посмотрим. Зачем вам нужна дорожная карта DevOps? В нашей статье о DevOps рассказывается о том, почему стать DevOps-инженером так сложно, ведь DevOps-команды включают в себя разработчиков и IT-специалистов, работающих рука об руку на протяжении всего жизненного цикла проекта. И поэтому, дорожная карта DevOps предполагает высокие навыки и необходимые шаги, которые помогают повысить скорость и качество разработки и развертывания и предотвратить организационную разрозненность. Иногда команды объединяются, чтобы максимизировать эффективность, при этом инженеры работают на протяжении всего жизненного цикла продукта или приложения. Итак, каковы же эти требования? Вот этот исчерпывающий список для того, чтобы получить эту дорожную карту, которая направит вас на верный путь. Как стать DevOps-инженером за 14 шагов 1. Изучайте языки программирования Первый шаг к тому, чтобы стать DevOps-инженером, - это владение одним или несколькими языками программирования. Конечно, вы не будете интегрировать базы данных или автоматизировать процессы разработки и развертывания, отлаживать базы данных, отлаживать код и исправлять возникающие проблемы, но в результате вы должны внести свой вклад в поддержание конвейера непрерывной интеграции/поставки в рабочем состоянии. Если вы читаете эту статью, то мы можем предположить, что вы владеете хотя бы одним из «больших» языков программирования, таких как Java, JavaScript или Python. Но если все же нет, то мы рекомендуем вам повысить уровень знания до высокого как минимум двух или трех языков программирования из списка ниже: Python Perl Java JavaScript Go Ruby Rust C C++ 2. Научитесь работать с разными ОС DevOps-инженеру необходимо знать, как работают разные операционные системы, а также различия между ними, в основном потому, что вы будете запускать приложения на серверах. В связи с этим, оптимальным решением для такого рода вещей, как правило, является Linux – ее используют большинство компаний и поставщиков серверов. Если вы используете веб-приложение, то оно, вероятнее всего, находится на сервере Linux. Есть и другие операционные системы, которые не помешает знать: Windows Unix Debian SUSE Linux Fedora Ubuntu CentOS RHEL macOS FreeBSD OpenBSD NetBSD 3. Концепция ОС Так вот, операционные системы – это лишь часть дорожной карты DevOps. Также вы должны быть в состоянии углубиться, понимая базовую инфраструктуру ОС, которая позволяет вам запускать приложение. Это называется «концепцией операционной системы», и вы должны быть знакомы с: Управлением запуском Управлением процессом Сокетами Front-end разработкой Потоками и параллелизмом Управлением вводом/выводом Основами POSIX Виртуализацией Файловыми системами Памятью и хранилищем Управлением службами Сетью 4. Сетевая безопасность и протоколы Как DevOps-инженер, вы должны быть всегда спокойны. Сетевая безопасность и протоколы помогут вам обеспечить целостность и безопасность ваших данных. Они определяют процессы и методологии, которые вы будете использовать для защиты вашей сети от попыток несанкционированного доступа. Вот протоколы, о которых вам следует знать: HTTP HTTPS FTP Межсетевые экраны SSH SSL/TTS IPsec и VPN Переадресация портов AT-TLS SNMP Аутентификация OSFP Прокси-доступ 5. Терминалы – ваш новый дом Консоль позволяет разработчикам автоматизировать, создавать сценарии и выполнять системные задачи без использования графического пользовательского интерфейса. В следствие чего, вы должны уметь работать с текстом, создавать bash-сценарии, отслеживать процессы, производительность системы, работать в сети, компилировать приложения из исходника, Vim, Nano, Emacs и Powershell. Мы готовы поспорить, что, если вы уже привыкли, и вам удобно, создавать файлы .cfg в выбранной вами FPS, то здесь вы будете как дома. И вам в любом случае нужно будет это делать. 6.Веб-серверы Когда пользователь запрашивает информацию, сервер выполняет запрос. На веб-сервере может размещаться один или несколько веб-сайтов с использованием одного и того же оборудования и ресурсов. Он взаимодействует с веб-браузером через HTTP/HTTPS. Быть DevOps-инженером означает знать, как контролировать сервер. Вот некоторые распространенные веб-серверы, о который вам стоит узнать: Apache Nginx IIS Tomcat Caddy Istio Envoy Consul Linkerd 7. Инструменты непрерывной интеграции/непрерывной поставки Конвейер непрерывной интеграции/поставки (CI/CD) необходим для разработки программного обеспечения в рамках DevOps. Как было сказано в предыдущей статье, непрерывная интеграция – это методика разработки программного обеспечения, при которой разработчики объединяют все изменения кода, которые они вносят, в единый репозиторий. В то время как, непрерывная поставка реализует изменения кода, которые автоматически создаются, тестируются и подготавливаются в производственному выпуску. Ее можно рассматривать как расширение непрерывной интеграции. Вот некоторые из инструментов, которые вы можете использовать для этой цели: TravisCI GitHub GitLab Bamboo Jenkins TeamCity Azure DevOps 8. Изучите инфраструктуру как код (IaC) Пожалуй, это одно из основных направлений работы DevOps-инженеров. Поэтому неудивительно, что эта тема довольно обширная и разнообразная. Знание таких контейнеров, как Kubernetes и Docker, а также различных инструментов управления конфигурацией имеет жизненно важное значение для вашего собственного развития и успеха проектов, которые вы возглавляете. Вот некоторые DevOps-инструменты, о которых вам следует знать: Docker Containers LXC Ansible Salt Chef Puppet Mesos Kubernetes Docker Swarm Nomad Istio Service Mesh Linkerd Consul Connet Maesh Kuma Terraform 9. Управление приложениями Управление приложениями относится к процессу измерения доступности, возможностей и производительности приложения. Данные, собираемые в процессе, позволяют выявлять и устранять баги и ошибки до того, как у пользователей возникнут проблемы. Обычно используется такое программное обеспечение, как: AppDynamic Instana New Relic Jaeger OpenTracing 10. Управление инфраструктурой Эта часть дорожной карты DevOps влечет за собой процесс получения как можно большего количества данных о вашей инфраструктуре с целью принятия обоснованных оперативных решений. В этой связи, используются данные, генерируемые помимо прочего приложениями, серверами и сетевыми устройствами, с целью отслеживание таких показателей, как мощность оборудования, пропускная способность сети и время работоспособности. В свою очередь, эта информация помогает повысить эффективность и устранять ошибки, показывая, какие области требуют большего внимания. Вот некоторые хорошие инструменты для управления инфраструктурой: Grafana Prometheus Zabbix Nagios Datadog 11. Шаблон облачного проектирования Этот шаблон помогает создавать масштабируемые, надежные и безопасные приложения в облаке. Однако для этого необходимо быть знакомым с одним ли несколькими шаблонами облачного проектирования. На наш взгляд, одними из самыми важными являются следующие: Источники событий Посредник CQRS Агрегирование на шлюзе Консолидация вычислительных ресурсов Внешнее хранилище конфигурации Уровень защиты от повреждений Каналы и фильтры Перенесение в шлюз Маршрутизация шлюза Расширение за счет внешних устройств 12. Управление логами Логи помогают составлять список событий, происходящих в системе, и изучать их детали. Благодаря этому, управление журналами поможет вам, то есть начинающему DevOps-инженеру, улучшить службы и процессы, предотвратить уязвимости и выявить узкие места. Вот некоторые из инструментов, которые вы так или иначе будете использовать: Splunk Elastic stack Graylog Papertrail 13. Поставщики облачных услуг и пакеты услуг Как мы уже поняли, облачные услуги – это то, с чем обязательно нужно быть знакомым DevOps-инженеру. Кроме того, вам необходимо понимать преимущества и особенности каждого поставщика облачных услуг для того, чтобы ваша организация могла сделать верный осознанный выбор. Некоторые из популярных заслуживают того, чтобы их изучили, например: Google Cloud AWS Azure Digital Ocean Linode Alibaba Конечно, стоит отметить, что эти провайдеры редко работают по фиксированной стоимости. Как правило, цены на эти услуги зависят от необходимого количества доменов и памяти и SSL-сертификатов, требуемых ЦП. 14. Другие технологии Это лишь краткий список того, что вам нужно сделать, чтобы получить знания на пути к тому, чтобы стать DevOps-инженером. Таблица кэша Обратный прокси-сервер Прокси-сервер переадресации Межсетевой экран Балансировка нагрузки Сервер кэширования Заключение Дорожная карта DevOps предназначена для того, чтобы направить вас на правильный путь к профессиональным навыкам DevOps. Конечно, это не означает, что он уже устоявшийся и не подлежит изменению. Технологии меняются ежедневно, и вы должны постоянно быть в курсе новых инструментов и решений. Еще один пункт на пути к становлению DevOps-инженером – это обучение и адаптация, и, пожалуй, самое важное – хорошо выполнять свою работу. Если вы следуете этой дорожной карте и у вас уже есть солидная база знаний в области компьютерных наук, то вам потребуется всего каких-то шесть месяцев для того, чтобы сдвинуться с той точки, в которой вы сейчас, и дойти до начала своей карьеры DevOps-инженера. Не забудьте добавить следующие пункты в список того, что нужно выучить: Языки программирования Концепции ОС Терминалы Сеть и безопасность Инструменты CI/CD Веб-сервер Инфраструктура как код Управление приложением Управление инфраструктурой Шаблон облачного проектирования Управление журналом Поставщики облачных услуг и управление службами Другие технологии Часто задаваемые вопросы Чем занимается DevOps-инженер? DevOps-инженер использует инструменты, процессы и методологии, чтобы удовлетворить все потребности в процессе разработки программного обеспечения, разработки оболочки пользовательского интерфейса и кодирования для развертывания, обслуживания и обновлений. Сколько времени нужно, чтобы стать DevOps-инженером? Если у вас уже есть опыт работы с Linux и сетями, и вы следуете дорожной карте DevOps-инженера, то это займет примерно шесть месяцев. Что такое CI/CD в DevOps? Это передовая методология DevOps, которая использует автоматизацию разработки приложений, позволяя увеличить скорость разработки и развертывания приложений. CI/CD относится к непрерывной интеграции, поставке и развертыванию.
img
YAML (YAML – Ain’t Markup Language, что можно перевести как "YAML – это не язык разметки"") считается языком сериализации по типу XML и JSON. Он представляет собой расширенную версию JSON, которая используется, в основном, для файлов конфигурации. Вы можете сохранить YAML-файл с расширением .yaml или .yml. Это удобочитаемый файловый формат, состоящий из пар «ключ-значение» и делающий акцент на отступы и отбивку строк. YAML активно используется в файлах конфигурации многих хорошо известных инструментов/технологий, по типу docker-compose, Kubernetes, Ansible и т.д. Ниже приведено сравнение YAML с XML и JSON. Теперь давайте обсудим синтаксис, типы данных и особенности YAML-файлов. Пары «ключ-значение» Пара «ключ-значение» – это базовая составляющая YAML. Каждый элемент в YAML-документе является членом как минимум одного словаря. Ключами чаще всего являются строки, а значением могут быть данные любого типа: число, логическое значение, строка, пустое значение, массив и объект. name: John age: 25 city: LA Числа Числа – это одни из скаляров, которые могут использоваться в качестве значения YAML-файлов. Числа бывают десятичными, с плавающей запятой, экспоненциальными, восьмеричными и шестнадцатеричными. Если добавлять их без одинарных или двойных кавычек, то они обрабатываются как строки. decimal : 10 float : 2.5 exponential : 5.0e+12 infinity : .inf octal : 0o12 hexadecimal : 0xF Примечание: Будьте осторожны при представлении некоторых стандартных типов чисел (время, восьмеричные и шестнадцатеричные коды и т.д.). Они могут быть некорректно интерпретированы. Вот несколько примеров. time : 6:00 hexval: 0x12 octval: 0o25 В этом примере время преобразуется в минуты, поэтому 6:00 интерпретируется как 360. 0x12 обрабатывается как шестнадцатеричный код, поэтому оно переводится в десятеричное значение 18, а 0o25 интерпретируется в десятеричное значение 21. Так что если вы не собираетесь использовать их в таком виде, то добавляйте эти значения в кавычках. Примечание: Начиная со спецификации YAML 1.2, 0o представляет восьмеричные значения. В более ранних версиях для этих целей использовался 0. Логические значения Логические значения похожи на другие языки программирования/представления с двумя состояниями: true или false. Логическими значениями в YAML-файлах считаются не только стандартные true/false, но также yes/no и on/off (исключение: если они добавлены в кавычках). Примечание: Следите за тем, как вы используете значения yes/no и on/off. Если добавлять их не в одинарных кавычках, то они будут интерпретироваться как логические значения true/false. Комментарии Вы можете комментировать содержимое YAML-файла с помощью символа #. Пример ниже: # This a comment on the first. # And this a commented second line. Строки В YAML-файле вы можете прописывать строки без кавычек. Либо добавлять их в одинарные или двойные кавычки. Можно даже пользоваться всеми тремя способами. Если в строке содержатся специальные символы, которые нужно экранировать с помощью , то добавлять такую строку нужно в двойных кавычках. Пример: signature: "John Williams Sales Executive XYZ Company LA." Но при использовании любого из специальных символов ниже: :, {, }, [, ], ,, &, *, #, ?, |, -, , =, !, %, @, ` не нужно ничего экранировать. Воспользуйтесь одинарными кавычками – с ними строка будет интерпретироваться как нужно. Одиночная строка Если вы хотите разбить одну строку на несколько строчек, но синтаксический анализатор должен будет интерпретировать их как одиночную строку, то сделайте следующее: message: > this is a normal string which spans more than multiple lines but needs to be treated as a single line. Начните код с символа > , а затем впишите содержимое строки в виде блока с отступами. В конце проанализированного содержимого добавляется . Если вам не нужен символ новой строки, то воспользуйтесь символом >-. Многострочное значение При добавлении строки, которая разделяется на несколько строк и анализируется так же, как написана, воспользуйтесь схемой ниже. message: | this is a multi-line string which spans across multiple lines and needs to be treated as a multi-line string. | добавляет в конце проанализированного содержимого символ перехода на новую строку. Если вы не хотите видеть в конце проанализированного содержимого символ , то лучше воспользуйтесь |-. Нулевые значения Вы можете представить нулевое значение с помощью ~ или null. Такие значения добавляются без кавычек. foo: ~ bar: null Массивы В YAML значения можно представить в форме массивов/списков. Пример массива данных: teams: - name: Australia rank: 3 - name: New Zealand rank: 4 - name: England rank: 1 - name: India rank: 2 В примере выше представлен массив объектов с названием и рангом команды. Обязательно проверьте, что отбивка строк и отступы заданы единообразно. В противном случае, файл будет некорректным. Каждый элемент массива обозначается через дефис -. Все элементы должны находиться на одном уровне с одинаковыми отступами. Если вместо объектов в массиве используются примитивные элементы, то их можно представить следующим образом: teams: [ Australia, New Zealand, England, India ] Объекты Объекты в YAML представляются так: student: name: John age: 22 city: NY college: NYU gpa: 3.5 Все атрибуты внутри объекта должны находиться на одном уровне и с одинаковым отступом. Именно это условие указывает на принадлежность к одному объекту и гарантирует корректность YAML-документа. Заключение В данной статье вы познакомились с базовыми концепциями при работе с YAML-файлами. Разобравшись в них, вы поймете, как правильно прописывать файлы для своих собственных инструментов и технологий.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59