По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Предыдущая статья из цикла про популярные приложения TCP/IP тут. Установление TCP-соединения происходит до того, как любая из других функций TCP сможет начать свою работу. Установление соединения относится к процессу инициализации полей "Sequence" и "Acknowledgment" и согласования используемых номеров портов. На рисунке 5 показан пример процесса установления соединения. Этот трехсторонний процесс установления соединения (также называемый трехсторонним рукопожатием) должен завершиться до начала передачи данных. Соединение существует между двумя сокетами, хотя в заголовке TCP нет единственного поля сокета. Из трех частей сокета подразумеваются IP-адреса на основе IP-адресов источника и назначения в IP-заголовке. TCP подразумевается, потому что используется заголовок TCP, как указано значением поля протокола в заголовке IP. Следовательно, единственные части сокета, которые необходимо закодировать в заголовке TCP, - это номера портов. TCP сообщает об установлении соединения, используя 2 бита в полях флагов заголовка TCP. Эти биты, называемые флагами SYN и ACK, имеют особенно интересное значение. SYN означает "синхронизировать порядковые номера", что является одним из необходимых компонентов при инициализации TCP. На рисунке 6 показано завершение TCP-соединения. Эта четырехсторонняя последовательность завершения проста и использует дополнительный флаг, называемый битом FIN. (FIN - это сокращение от "finished", как вы могли догадаться.) Одно интересное замечание: перед тем, как устройство справа отправит третий сегмент TCP в последовательности, оно уведомляет приложение о том, что соединение прерывается. Затем он ожидает подтверждения от приложения перед отправкой третьего сегмента на рисунке. На случай, если приложению потребуется некоторое время, чтобы ответить, ПК справа отправляет второй поток на рисунке, подтверждая, что другой ПК хочет разорвать соединение. В противном случае ПК слева может повторно отправить первый сегмент. TCP устанавливает и завершает соединения между конечными точками, а UDP - нет. Многие протоколы работают в рамках одних и тех же концепций, поэтому термины "ориентированный на соединение" и "без установления соединения" используются для обозначения общей идеи каждого из них. Более формально эти термины можно определить следующим образом: Протокол, ориентированный на соединение: протокол, который требует обмена сообщениями до начала передачи данных или который имеет требуемую предварительно установленную корреляцию между двумя конечными точками. Протокол без установления соединения: протокол, который не требует обмена сообщениями и не требует предварительно установленной корреляции между двумя конечными точками. Восстановление после ошибок и надежность TCP обеспечивает надежную передачу данных, что также называется reliability or error recovery. Для обеспечения надежности TCP нумерует байты данных, используя поля "Sequence" и "Acknowledgment" в заголовке TCP. TCP обеспечивает надежность в обоих направлениях, используя поле Sequence Number одного направления в сочетании с полем Acknowledgment в противоположном направлении. На рисунке 7 показан пример того, как поля TCP Sequence и Acknowledgment позволяют ПК отправлять 3000 байтов данных на сервер, при этом сервер подтверждает получение данных. Сегменты TCP на рисунке расположены по порядку, сверху вниз. Для простоты все сообщения содержат 1000 байтов данных в части данных сегмента TCP. Первый порядковый номер - красивое круглое число (1000), опять же для простоты. В верхней части рисунка показаны три сегмента, каждый из которых на 1000 больше предыдущего, что указывает на первый из 1000 байтов сообщения. (То есть в этом примере первый сегмент содержит байты 10001999; второй - байты 20002999, а третий - байты 30003999.) Четвертый сегмент TCP на рисунке - единственный, который возвращается от сервера к веб-браузеру - подтверждает получение всех трех сегментов. Как? Значение подтверждения 4000 означает: "Я получил все данные с порядковыми номерами на единицу меньше 4000, поэтому я готов принять ваш байт 4000 следующим". (Обратите внимание, что это соглашение о подтверждении путем перечисления следующего ожидаемого байта, а не номера последнего полученного байта, называется прямым подтверждением.) Однако этот пример не исправляет никаких ошибок; он просто показывает основы того, как хост-отправитель использует поле порядкового номера для идентификации данных, а хост-получатель использует прямые подтверждения для подтверждения данных. Более интересное обсуждение вращается вокруг того, как использовать эти же инструменты для восстановления ошибок. TCP использует поля "Sequence" и "Acknowledgment", чтобы принимающий хост мог заметить потерю данных, попросить отправляющий хост повторно отправить, а затем подтвердить, что повторно отправленные данные прибыли. Существует множество вариантов того, как TCP выполняет исправление ошибок. На рисунке 8 показан только один такой пример, детализация которого аналогична предыдущему. Веб-браузер снова отправляет три сегмента TCP, снова по 1000 байт каждый, снова с легко запоминающимися порядковыми номерами. Однако в этом примере второй сегмент TCP не может пройти через сеть. Рисунок указывает на три набора идей, лежащих в основе того, как думают два хозяина. Во-первых, справа сервер понимает, что он не получил все данные. Два полученных сегмента TCP содержат байты с номерами 10001999 и 30003999. Очевидно, сервер не получил байты, пронумерованные между ними. Затем сервер решает подтвердить все данные вплоть до потерянных, то есть отправить обратно сегмент с полем подтверждения, равным 2000. Получение подтверждения, которое не подтверждает все данные, отправленные на данный момент, заставляет хост-отправитель повторно отправить данные. ПК слева может подождать несколько секунд, чтобы убедиться, что другие подтверждения не поступят (используя таймер, называемый таймером повторной передачи), но вскоре решит, что сервер сообщает: "Мне действительно нужно 2000 - отправьте его повторно". ПК слева делает это, как показано на пятом из шести сегментов TCP на рисунке. Наконец, обратите внимание, что сервер может подтверждать не только повторно отправленные данные, но и любые предыдущие данные, которые были получены правильно. В этом случае сервер получил повторно отправленный второй сегмент TCP (данные с порядковыми номерами 20002999), и сервер уже получил третий сегмент TCP (данные с номерами 30003999). Следующее поле подтверждения сервера подтверждает данные в обоих этих сегментах с полем подтверждения, равным 4000. Управление потоком с использованием окон TCP реализует управление потоком, используя концепцию окна, которая применяется к количеству данных, которые могут быть ожидающими подтверждения в любой момент времени. Концепция окна позволяет принимающему хосту сообщать отправителю, сколько данных он может получить прямо сейчас, давая принимающему хосту способ замедлить или ускорить отправляющий хост. Получатель может перемещать размер окна вверх и вниз (это называется скользящим окном или динамическим окном), чтобы изменить объем данных, который может отправить хост-отправитель. Механизм раздвижного окна имеет больше смысла на примере. В примере, показанном на рисунке 9, используются те же основные правила, что и в примерах на нескольких предыдущих рисунках. В этом случае ни один из сегментов TCP не содержит ошибок, и обсуждение начинается на один сегмент TCP раньше, чем на предыдущих двух рисунках. Начнем с первого сегмента, отправленного сервером на ПК. Поле Acknowledgment должно быть вам знакомо: оно сообщает ПК, что сервер ожидает следующий сегмент с порядковым номером 1000. Новое поле, поле окна, установлено на 3000. Поскольку сегмент передается на ПК, это значение сообщает ПК, что ПК может послать не более 3000 байтов по этому соединению до получения подтверждения. Итак, как показано слева, ПК понимает, что может отправлять только 3000 байтов, и прекращает отправку, ожидая подтверждения, после отправки трех 1000-байтовых сегментов TCP. Продолжая пример, сервер не только подтверждает получение данных (без потерь), но и решает немного увеличить размер окна. Обратите внимание, что второе сообщение, идущее справа налево на рисунке, на этот раз с окном 4000. Как только ПК получает этот сегмент TCP, ПК понимает, что он может отправить еще 4000 байтов (окно немного больше, чем предыдущее значение). Обратите внимание, что хотя на последних нескольких рисунках показаны примеры с целью объяснения того, как работают механизмы, из этих примеров может сложиться впечатление, что TCP заставляет хосты сидеть и долго ждать подтверждения. TCP не хочет заставлять хост-отправитель ждать отправки данных. Например, если подтверждение получено до того, как окно будет исчерпано, начинается новое окно, и отправитель продолжает отправлять данные до тех пор, пока текущее окно не будет исчерпано. Часто в сети, где мало проблем, мало потерянных сегментов и небольшая перегрузка, окна TCP остаются относительно большими, а узлы редко ждут отправки. Закрепим самое важное про TCP и UDP в следующей статье.
img
Функция как сервис или FaaS (Function as a service) это относительно новомодный термин, которым определяется возможность бессерверного запуска кусков кода, что дает возможность разработчикам писать и обновлять эти куски кода на лету, которые будут запускаться в результате отклика на какое-нибудь событие, к примеру, когда пользователь нажмет на элемент в веб-приложении. Благодаря этому масштабировать код и внедрять микросервисы становится на порядок проще. Что такое микросервисы? Небольшая аналогия: представьте себе большое полотно от известного художника - в нашем случае это будет веб-приложением. А теперь представьте себе большое произведение искусства, которое составлено из кусочков мозаики - причем каждый кусочек можно достать, немного модернизировать и починить, что практически невозможно в случае цельного веб-приложения. Такой подход к написанию приложения из набора модульных компонентов известен как микросервисная архитектура. Причем подобный подход довольно тепло воспринимается разработчиками, так как они могут создавать и модифицировать маленькие куски кода, которые относительно легко имплементировать в структуру приложения. Причем в монолитном приложении совершенно обратная ситуация, когда это приложение является огромной и экстремально сложной системой, где изменение одного из элементов может порушить его работу и процесс внесения изменения приближается по сложности к запуску шаттла. Таким образом, использование FaaS многократно снижает сложность внесения изменений и запуска нового кода, что дает возможность разработчикам сосредоточиться на самом коде, в то время как FaaS провайдер будет следить за нужным количеством вычислительных ресурсов и различных бэкэнд сервисов. Какие плюсы такой технологии? Увеличенная скорость разработки С FaaS разработчики могут тратить больше времени на логику приложения и не думать о том, куда и как это приложение воткнуть, что как правило ведет к более высокой скорости написания и имплементации кода. Bстроенная масштабируемость Так как FaaS платформы сами по себе легко масштабируемы в автоматическом режиме, разработчикам не нужно думать о моментах, в которые производительность приложения может пострадать - например, в различные часы наибольшей нагрузки. Всю заботу о масштабируемости возьмет на себя облачный провайдер. Оптимизация затрат Знаете, какой самый большой страх пользователя облачных серверов? Что вы наберете кучу серверов, а необходимой нагрузки не будет, что повлечет за собой в пустую простаивающие мощности. Логично, что появилась такая модель как FaaS, которая позволяет заказчикам платить только за то время, когда вычислительные мощности действительно работают. Какие минусы технологии FaaS? Снижение степени контроля системы в общем Учитывая, что всю заботу за железо, оркестрацию и прочее берет на себя провайдер, отладка кода и понимание цельной картинки может быть нетривиальной задачей - поэтому многие все еще предпочитают действовать по классической модели. Процесс тестирования становится гораздо сложнее Впихнуть невпихуемое, а именно микросервисное приложение (или целый комплект таких приложений) в локальное окружение для тестирование становится нетривиальной задачей, и часто начинают требоваться люди с нетривиальным опытом и экспертизой. Как начать использовать FaaS? Вам нужно начать переговоры с облачными провайдерами, которые предоставляют подобные сервисы - все просто. В первую очередь нужно будет понимать где будут располагаться ЦОДы провайдеры - так как в случае большого расстояния между ЦОДами могут начаться непрогнозируемые и странные проблемы. Список из таких провайдеров не велик, но всем хорошо знакомы эти имена: AWS (проект Lambda), Microsoft (Azure Functions) и Yandex Cloud Functions. Но в России выбор будет практически очевиден в пользу Яндекса, так как его сервера находятся ближе всего к нашей большой стране.
img
Всем привет! Сегодня в статье мы рассмотрим функцию обратного вызова Callback в Cisco Unified Communications Manager (CUCM) . Функция Callback используется для информирования вызывающего абонента о доступности вызываемого абонента, в случае если он был занят. Настройка Для начала нужно перейти в меню Cisco Unified Serviceability и там перейти во вкладку Tools → Service Activation. Здесь выбрать наш сервер и убедиться что напротив Cisco Extended Functions стоит галочка. Далее настроим Softkey (подробно об этом можно почитать в нашей статье). Для этого переходим меню Cisco Unified CM Administration и находим вкладку Device → Device Settings → Softkey Template. Здесь нажимаем Add New, выбираем шаблон Standard User и нажимаем Copy, после чего указываем имя нового шаблона и его описание. После этого в правом верхнем углу из выпадающего меню выбираем Configure Softkey Layout и нажимаем Go. В открывшемся окне из поля Unselected Softkeys нужно перенести в Selected Softkeys пункт Callback, нажав на кнопку со стрелкой вправо. Сделать это нужно для состояний On Hook, Connected Transfer и Ring Out, которые выбираются в поле Select a call state to configure. После этого применим шаблон кнопок к телефону. Переходим во вкладку → Phone и находим телефон, на который мы хотим применить шаблон. Шаблон нужно выбрать в строке Softkey Template, после чего нажать Save и Apply Config. В результате у нас на телефоне в нижней части экрана появится кнопка CallBack. Теперь посмотрим, как это работает. Делаем звонок с телефона А на телефон Б и телефон Б занят. На телефоне А нажимаем кнопку CallBack. После этого нажимаем OK и сообщение сменится на CallBack is activated. Чтобы убрать это сообщение нажимаем Exit. Чтобы деактивировать функцию нужно нажать кнопку Cancel. Теперь когда телефон Б освободится на телефоне А появится окно со звуковым сигналом с сообщением о доступности телефона Б. Чтобы сразу позвонить ему нужно нажать кнопку Dial.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59