По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Cisco Unity Connection (CUC) это решение, которое создано для обеспечения обмена голосовыми сообщениям в корпоративной сети и удовлетворения целого множества других бизнес – требований. Пользователи CUC могу прослушивать оставленные для них голосовые сообщения с помощью телефона, технологий по распознаванию речи и множества других клиентских приложений. Гибкий интерфейс администратора, позволяет легко настраивать приложения для конвертации текста в речь с целью удовлетворения бизнеса. CUC – масштабируется до 20 000 пользователей в рамках одного сервера. Если необходима поддержка большего количества пользователей, решение позволяет одновременно разворачивать до 10 серверов а так же поддерживает кластеризацию. Начиная с версии 8.5, поддерживается Unified Messaging, который обеспечивает синхронизацию голосовой почты с Exchange сервером. С версии 7.x, CUC поддерживает кластерные пары модели «active-active», в рамках которой обеспечивается высокий показатель отказоустойчивости и масштабируемости по сравнению с единичным сервером. Важно отметить, что Cisco Unity поддерживает протокол VPIM (Voice Profile for Internet Mail), который описан в RFC 2423 и RFC 3801 и обеспечивает использование различных платформ для голосовой почты таких производителей как Cisco, Nortel или Avaya, в рамках одной сети. Для организаций, которым не нужна крупная и сильно производительная система, существует возможность инсталляции CUC как части Cisco Unified Communications Manager Business Edition, который совмещает в себе функционал CUCM и CUC в рамках единого сервера, с возможностью поддержки до 500 телефонных аппаратов и пользователей голосовой почты и 24 порта Unity Connection. Разработанный специально для среднего бизнеса, Business Edition не обладает такими высокими показателями масштабируемости и отказоустойчивости, однако является привлекательным решением с точки зрения цены и удобства администрирования. Администраторы, которые поработил с интерфейсом Cisco Unified Communications Manager смогут оценить достоинства интерфейса CUC. Так же как и CUCM, Unity использует операционную систему на базе Linux с базой данных IBM Informix. Схожесть интерфейса, обеспечит быструю адаптацию администратора к интерфейсу Unity Connection. Более того, многие конфигурационные параметры настраиваются идентично на CUCM и CUC, например, такие как настройка интеграции с AD по протоколу Lightweight Directory Access Protocol (LDAP). Итог В итоге, хочется подчеркнуть следующие особенности Cisco Unity Connection: Обеспечение обмена голосовой почтой для 20 000 пользователей в рамках одного сервера. CUC использует VPIM для увеличение числа пользователей (свыше 20 000) Cisco Unity Connection использует ОС Linux и базу данных IBM Informix для хранения конфигурации и сообщений.
img
Инструменты командной строки, такие как top, затрудняют мониторинг использования процессора и памяти. Поэтому сегодня мы представляем вам vtop - бесплатный и с открытым исходным кодом, простой, но в то же время мощный и расширяемый инструмент мониторинга активности терминала, написанный на Node.js. Он разработан для того, чтобы пользователи могли легко просматривать загруженность процессора при использовании многопроцессорных приложений (те, которые имеют мастер-процесс и дочерние процессы, например, NGINX, Apache, Chrome и т.д.). vtop также позволяет легко увидеть всплески сверхурочного функционирования памяти, а также потребление памяти. vtop использует символы Unicode шрифта Брайля для построения и отображения графиков использования процессора и памяти, что помогает визуализировать скачки. Кроме того, он группирует процессы с одним и тем же именем (мастер и все дочерние процессы) вместе. В этой статье вы узнаете, как установить инструмент мониторинга vtop в Linux. Установка vtop в Linux-системах Требования: в качестве предварительного условия в вашей системе должны быть установлены Node.js и NPM. После того, как на вашей системе установлены Node.js и NPM, запустите следующую команду для установки vtop. При необходимости используйте команду sudo для получения root прав при установке пакета. sudo npm install -g vtop После установки vtop выполните следующую команду, чтобы запустить его. vtop Ниже приведены сочетания клавиш vtop, нажав: u - обновления до последней версии vtop. k или стрелка вверх перемещает процесс вверх по списку. j или стрелка вниз перемещает процесс вниз по списку. g перемещает вас вверх по списку процессов. G перемещает вас в конец списка. dd убивает все процессы в этой группе (сначала нужно выбрать имя процесса). Чтобы изменить цветовую схему, используйте переключатель --theme. Вы можете выбрать любую из доступных тем (такие как: acid, becca, brew, certs, dark, gooey, gruvbox, monokai, nord, parallax, seti, и wizard) К примеру: vtop --theme wizard Для установки интервала между обновлениями (в миллисекундах) используйте --update-interval. В данном примере 20 миллисекунд эквивалентно 0.02 секунды: vtop --update-interval 20 Вы также можете настроить завершение работы vtop через несколько секунд, используя опцию --quit-after, как показано ниже. vtop --quit-after 5 Чтобы получить справку по vtop, запустите следующую команду. vtop -h vtop имеет множество функций, включая выполнение измерений запросов сервера, запись логов и так далее.
img
Виртуализация часто применяется для поиска более простого способа решения некоторых проблем, отмеченных в начальных статьях этой темы, таких как разделение трафика. Как и все в мире сетевой инженерии, здесь есть компромиссы. На самом деле, если вы не нашли компромисс, вы плохо искали. В этом разделе будут рассмотрены некоторые (хотя, конечно, не все) различные компромиссы сложности в области виртуализации сети. Основой этого обсуждения будет триада компромиссов сложности: Состояние: количество состояний и скорость, с которой изменяется состояние в сети (особенно в плоскости управления). Оптимизация: оптимальное использование сетевых ресурсов, включая такие вещи, как трафик, следующий по кратчайшему пути через сеть. Поверхность: количество слоев, глубина их взаимодействия и широта взаимодействия. Поверхности взаимодействия и группы связей общих рисков Каждая система виртуализации, когда-либо задуманная, реализованная и развернутая, создает в некотором роде общий риск. Например, рассмотрим одну линию, по которой передается несколько виртуальных каналов, каждый из которых передает трафик. Должно быть очевидным (на самом деле тривиальным) наблюдение, что в случае отказа одного физического канала произойдет сбой всех виртуальных каналов. Конечно, вы можете просто перенаправить виртуальные каналы на другой физический канал. Правильно? Может быть, а может и нет. Рисунок 1 иллюстрирует это. С точки зрения A и D, есть две линии, доступные через B и C, каждая из которых обеспечивает независимое соединение между хостом и сервером. В действительности, однако, и провайдер 1, и провайдер 2 приобрели виртуальные каналы через единственное соединение у провайдера 3. Когда единственное соединение в сети провайдера 3 выходит из строя, трафик может быть перенаправлен с основного пути через провайдера 1 на путь через провайдера. 2, но поскольку оба канала используют одну и ту же физическую инфраструктуру, ни одна из них не сможет передавать трафик. Говорят, что эти два звена в этой ситуации разделяют одну общую судьбу, потому что они являются частью Shared Risk Link Group (SRLG). Можно найти и обойти SRLG или ситуации с shared fate, но это усложняет плоскость управления и/или управление сетью. Например, невозможно обнаружить эти shared fate без ручного тестирования различных ситуаций отказа на физическом уровне или изучения сетевых карт, чтобы найти места, где несколько виртуальных каналов проходят по одному и тому же физическому каналу. В ситуации, описанной на рисунке 1, найти ситуацию с shared fate было бы почти невозможно, поскольку ни один из провайдеров, скорее всего, не скажет вам, что использует линию от второго провайдера, показанного на рисунке как провайдер 3, для предоставления услуг. Как только эти ситуации с shared fate обнаружены, необходимо предпринять некоторые действия, чтобы избежать серьезного сбоя в работе сети. Обычно для этого требуется либо вводить информацию в процесс проектирования, либо усложнять дизайн, либо вводить информацию в плоскость управления (см. RFC8001 в качестве примера типа сигнализации, необходимой для управления группами SRLG в плоскости управления, спроектированной трафиком). По сути, проблема сводится к следующему набору утверждений: Виртуализация - это форма абстракции. Абстракция удаляет информацию о состоянии сети с целью снижения сложности или предоставления услуг за счет реализации политики. Любое нетривиальное сокращение информации о состоянии сети так или иначе снизит оптимальное использование ресурсов. Единственным противодействием конечному состоянию из этих трех, является протекание информации через абстракцию, поэтому можно восстановить оптимальное использование ресурсов - в этом случае отказ одного канала не вызывает полного отказа потока трафика через сеть. Единственное решение, таким образом, - сделать абстракцию сквозной абстракцией, что снизит эффективность абстракции при контроле области действия состояния и реализации политики. Поверхности взаимодействия и наложенные плоскости управления В сетевой инженерии принято накладывать друг на друга два протокола маршрутизации или две плоскости управления. Хотя это не часто рассматривается как форма виртуализации, на самом деле это просто разделение состояния между двумя различными плоскостями управления для контроля количества состояний и скорости изменения состояний, чтобы уменьшить сложность обеих плоскостей управления. Это также часто встречается при запуске виртуальных наложений в сети, поскольку между головным и хвостовым узлами туннеля будет существовать нижележащая плоскость управления, обеспечивающая достижимость, и плоскость управления наложением, обеспечивающая достижимость в виртуальной топологии. Две наложенные друг на друга плоскости управления будут взаимодействовать иногда неожиданным образом. Для иллюстрации используется рисунок 2. На рисунке 2: Каждый маршрутизатор в сети, включая B, C, D и E, использует две плоскости управления (или, если это проще, протоколы маршрутизации, отсюда протокол 1 и протокол 2 на рисунке). Протокол 1 (оверлей) зависит от протокола 2 (базовый) для обеспечения доступности между маршрутизаторами, на которых работает протокол 1. Протокол 2 не содержит информации о подключенных устройствах, таких как A и F; вся эта информация передается в протоколе 1. Протокол 1 требует гораздо больше времени для схождения, чем протокол 2. Более простой путь от B к E проходит через C, а не через D. Учитывая этот набор протоколов, предположим, что C на рисунке 2 удален из сети, двум управляющим плоскостям разрешено сходиться, а затем C снова подключается к сети. Каков будет результат? Произойдет следующее: После удаления C сеть снова объединится с двумя путями в локальной таблице маршрутизации в B: F доступен через E. E доступен через D. После повторного подключения C к сети протокол 2 быстро сойдется. После повторной конвергенции протокола 2 лучший путь к E с точки зрения B будет через C. Следовательно, у B теперь будет два маршрута в локальной таблице маршрутизации: F доступен через E. E достижимо через C. B перейдет на новую информацию о маршрутизации и, следовательно, будет отправлять трафик к F через C до того, как протокол 1 сойдется, и, следовательно, до того, как C узнает о наилучшем пути к F. С момента, когда B начинает пересылку трафика, предназначенного для F в C, и момента, когда протокол 1 сойдется, трафик, предназначенный для F, будет отброшен. Это довольно простой пример неожиданного взаимодействия наложенных протоколов. Чтобы решить эту проблему, вам необходимо ввести информацию о состоянии конвергенции протокола 1 в протокол 2, или вы должны каким-то образом заставить два протокола сходиться одновременно. В любом случае вы по существу добавляете состояние обратно в два протокола, чтобы учесть их разницу во времени конвергенции, а также создавая поверхность взаимодействия между протоколами. Примечание: Этот пример описывает фактическое взаимодействие конвергенции между IS-IS и BGP, или протоколом Open Shortest Path First (OSPF) и BGP. Чтобы решить эту проблему, более быстрый протокол настроен на ожидание, пока BGP не сойдется, прежде чем устанавливать какие-либо маршруты в локальной таблице маршрутизации.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59