По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегодня, в этой статье, вы узнаете, как формируются соседства BGP внутри автономной системы, между автономными системами и даже между маршрутизаторами, которые не связаны напрямую. Кроме того, мы рассмотрим аутентификацию BGP. Предыдущие статьи цикла про BGP: Основы протокола BGP Построение маршрута протоколом BGP Видео: Основы BGP за 7 минут BGP-пиринг Учитывая, что BGP является протоколом маршрутизации AS-to-AS, вполне логично, что внешний BGP (т.е. eBGP) является ключевым компонентом в его операциях. Самое первое, что нам нужно учитывать при работе с eBGP, - это то, что стандарты построены таким образом, что требуется прямое подключение. Это требование конечно можно обойти, но этот момент необходимо рассмотреть. Поскольку предполагается прямое соединение, протокол BGP выполняет две вещи: Он будет проверять значение времени жизни (TTL), и что значение time-to-live установлено в 1. Это означает прямую связь между одноранговыми узлами EBGP. Осуществляется проверка, что два устройства находятся в одной подсети. Еще один важный момент рассмотрения пирингов eBGP - это TCP-порты, которые будут использоваться. Это особенно важно для конфигураций брандмауэров, которые защищают автономные системы. Первый спикер BGP, который инициирует изменения состояния, приходящие по мере формирования соседства, будет получать трафик из случайного TCP-порта, а конечным портом будет TCP-порт 179. Отвечающий спикер BGP будет получать трафик с TCP-порта 179, а порт назначения будет случайным портом. Брандмауэры должны быть перенастроены с учетом изменений в коммуникации. На основе этих изменений спикер BGP инициирует сеанс, и это, вносит изменения для будущего сеанса. Некоторые администраторы даже создают механизмы для обеспечения того, чтобы сформированные пиринги были получены из известного направления. А как насчет IPv6? Ну, как было сказано ранее в предыдущей статье, BGP очень гибок и работает с IPv6, поскольку протокол был изначально спроектирован с учетом IPv6. Вы можете формировать пиринги eBGP (и iBGP) с использованием IPv6- адресации, даже если вы используются префиксы IPv4 для информации о достижимости сетевого уровня. Чтобы сформировать в нашей сети пиринг eBGP, необходимо выполнить следующие действия: Запустите процесс маршрутизации для BGP и укажите локальный AS (router bgp local_as_number). Предоставить удаленному спикеру eBGP IP- адрес и удаленному AS номер (neighbor ip-_of_neighbor remote-as remote_as_number). Пример 1 демонстрирует конфигурацию и проверку EBGP пиринга между маршрутизаторами TPA1 и ATL. Пример 1: Настройка пиринга eBGP ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#router bgp 220 ATL(config-router)#neighbor 30.30.30.1 remote-as 110 ATL(config-router)#end ATL# TPAl#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)router bgp 110 TPA1(config-router)#neighbor 30.30.30.2 remote-as 220 TPA1(config-router)#end TPA1# TPAl#show ip bgp summary BGP router identifier 30.30.30.1, local AS number 110 BGP table version is 4, main routing table version 4 1 network entries using 120 bytes of memory 1 path entries using 52 bytes of memory 1/1 BGP path/bestpath attribute entries using 124 bytes of memory 1 BGP AS-PATH entries using 24 bytes of memory 0 BGP route-map cache entries using 0 bytes of memory 0 BGP filter-list cache entries using 0 bytes of memory BGP using 320 total bytes of memory BGP activity 2/1 prefixes, 2/1 paths, scan interval 60 secs Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 30.30.30.2 4 220 413 414 4 0 0 06:12:46 1 TPA1# Примечание: чтобы облегчить понимание BGP, вы можете включить функцию debug ip bgp, при настройке пиринга. Это позволит увидеть переходные состояния в соседстве. Кроме того, чтобы получить больше информации о соседствах, вы можете использовать команду show ip bgp neighbors. Создание eBGP пиринга, на основе IPv6, выполняется также очень просто, как и на основе IPv4. Единственное изменение заключается в том, что мы заменяем адресацию в IPv4 на IPv6 и активируем соседство. Семейства адресов в маршрутизаторах Cisco для BGP позволяют запускать множество различных схем информирования о достижимости сетевого уровня (NLRI) в рамках одного и того же общего процесса BGP. Пример 2 демонстрирует подход к пирингу IPv6. Пример 2: конфигурация пиринга EBGP с использованием IPv6 ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#router bgp 220 ATL(config-router)#neighbor 2201:1212:1212::2 remote-as 110 ATL(config-router-af)#neighbor 2201:1212:1212::2 activate ATL(config-router-af)#end ATL# iBGP-пиринг Если вы внимательно посмотрите на топологию, вы можете заметить, что что-то выглядит необычно. Видно, что есть iBGP-пиринг. Почему существует пиринг iBGP, созданный между TPA1 и TPA2? Это выглядит совершенно неуместно. В данном случае, как говорится, внешность может быть обманчива. Главное, что вы должны усвоить относительно BGP, является тот факт, что существует нечто, называемое правилом разделения горизонта (Split Horizon Rule) iBGP. Это правило гласит, что ни один спикер iBGP не может принять обновление и затем отправить это же обновление другому узлу iBGP. Так же в требовании говориться, о полном объединении наших спикеров iBGP для обеспечения полной осведомленности о префиксах. Еще одним важным аспектом, связанным с iBGP, является избыточность. Мы хотим установить несколько физических связей между устройствами, но что произойдет, если связь, используемая для BGP, прервется? Как мы автоматически переключимся к пирингу, используя альтернативное подключение? Простой способ решить эту проблему заключается в реализации loopback-адресов и использовании этих адресов для однорангового соединения. Это то, что мы часто делаем с нашими пирингами BGP, и это может потребовать, дополнительной настройки при использовании подключения к провайдеру. Например, в Cisco мы должны специально указать, что источником пиринга является loopback IP- адрес. Примечание: еще одним важным аспектом при пиринге между петлевыми адресами в iBGP является то, что loopback-адреса фактически доступны между спикерами BGP. Именно здесь очень удобно использовать протокол внутреннего шлюза (IGP), такой как OSPF или EIGRP. Пример 3 показывает конфигурацию пиринга iBGP между устройствами TPA и TPA1. Обратите внимание, что мы используем петлевой подход в том случае, если мы хотим добавить избыточные связи между устройствами в будущем. Пример 3: Настройка пиринга iBGP TPA#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA(config)router bgp 110 TPA(config-router)#neighbor 8.8.8.8 remote-as 110 TPA(config-router)#neighbor 8.8.8.8 update-source loopbackO TPA(config-router)#end TPA# TPAl#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)#router bgp 110 TPA1(config-router)#neighbor 5.5.5.5 remote-as 110 TPA1(config-router)#neighbor 5.5.5.5 update-source loopbackO TPA1(config-router)#end TPA1# eBGP Multihop В разделе eBGP-пиринг этой статьи, обсуждалось, что ваши соседи будут связаны напрямую. В разделе iBGP мы обсуждали преимущество пиринга между loopback для избыточности. Теперь пришло время ответить на вопрос: Что делать, если ваши спикеры eBGP не подключены напрямую? На самом деле, если мы хотим пиринговать между loopback с eBGP, чтобы воспользоваться потенциальной избыточностью. Как сделать это, поскольку интерфейсы loopback не связаны напрямую друг с другом? BGP решает эту проблему с помощью опции eBGP multihop. С помощью настройки eBGP multihop вы указываете максимальное количество допустимых прыжков. Это пропускает проверку BGP для TTL на значение равное 1, рассмотренное ранее в этой статье. Но как насчет требования прямого подключения? BGP отключает эту проверку в фоновом режиме автоматически, при использовании функции eBGP multihop. Пример 4 демонстрирует настройку eBGP multihop между TPA1 и ATL. Здесь нужен multihop, потому что мы настраиваем пиринг между loopback устройств. Пример 4: eBGP Multihop ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#router bgp 220 ATL(config-router)#neighbor 8.8.8.8 remote-as 110 ATL(config-router)#neighbor 8.8.8.8 update-source loopbackO ATL(config-router)#neighbor 8.8.8.8 ebgp-multihop 2 ATL(config-router)#end ATL# TPAl#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)router bgp 110 TPA1(config-router)#neighbor 7.7.7.7 remote-as 220 TPA1(config-router)#neighbor 7.7.7.7 update-source loopbackO TPA1(config-router)#neighbor 7.7.7.7 ebgp-multihop 2 TPA1(config-router)#end TPA1# BGP аутентификация Большинство организаций сегодня добавляют аутентификацию в свои настройки BGP, чтобы защитить их от различного рода атак. По общему признанию, аутентификацию немного сложнее настроить на BGP, чем с на других протоколах маршрутизации, поскольку конфигурация — пирингов- это ручной процесс, который должен выполнен на обоих устройствах. Даже с учетом вышесказанного, аутентификация устройств (eBGP или даже iBGP) - отличная идея. В Cisco настройка аутентификации осуществляется просто. Необходимо задать пароль (т.е. общий секрет) на каждое устройство, настроенное для пиринга. Обязательно усвойте, что этот пароль будет отображаться в открытом виде (по умолчанию) внутри вашей сети. Можно использовать команду service password-encryption для выполнения по крайней мере простого шифрования тех незашифрованных текстовых паролей, которые появляются в конфигурации маршрутизатора. Аутентификация с шифрованием Message Digest 5 (MD5) – это результат простого задания пароля на устройствах. Пример 5 отображает аутентификацию, добавленную в конфигурации для TPA1 и ATL. Пример 5. Настройка аутентификации для BGP-пиринга ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#router bgp 220 ATL(config-router)#neighbor 8.8.8.8 remote-as 110 ATL(config-router)#neighbor 8.8.8.8 update-source loopbackO ATL(config-router)#neighbor 8.8.8.8 ebgp-multihop 2 ATL(config-router)#neighbor 8.8.8.8 password MySuperSecret121 ATL(config-router)#end ATL# TPAl#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)router bgp 110 TPA1(config-router)#neighbor 7.7.7.7 remote-as 220 TPA1(config-router)#neighbor 7.7.7.7 update-source loopbackO TPA1(config-router)#neighbor 7.7.7.7 ebgp-multihop 2 ATL(config-router)#neighbor 7.7.7.7 password MySuperSecret121 TPA1(config-router)#end TPA1#
img
Вообще, трудно представить жизнь без Интернета. Почти в каждой квартире сегодня есть минимум один Интернет канал будь то оптика, ADLS, мобильный Интернет или даже спутниковый. Если раньше интернет был только на конце провода и, чтобы подключится к глобальной сети нужно было сидеть привязанным к розетке Ethernet кабеля, то сейчас эту проблему решила технология Wi-Fi. Правда, с кабелем было как-то безопаснее, а вот Wi-Fi, если его не настроить нужным образом, не обеспечит нужного уровня надёжности. Другая проблема - мощность сигнала. С кабелем такой проблемы почти нет, особенно на близких расстояниях, но радиоволны -другая природа: они очень капризны. В этом материале речь пойдёт о том, как решить вышеуказанные проблемы. Для начала разберёмся, как и где следует устанавливать Wi-Fi маршрутизатор. В силу того, что радиоволны не очень любят помехи, а в квартире они всегда есть, то здесь нужно найти точку, где сигнал наиболее мощный. Для этого есть и специализированное оборудование, и программы, а самый доступный способ - это ноутбук. Устанавливаете туда специальное ПО, коих полно в интернете, просто в поисковике набираете Wi-Fi analyser, а затем, перемещая Wi-Fi устройство, выбираете оптимальное для вас место. На больших площадях можно подключить ещё одну Wi-Fi точку доступа, но это другая тема. Нужно обратить внимание на то, чтобы рядом с Wi-Fi маршрутизатором не было микроволновок, Bluetooth устройств и другого оборудования, работающего на радиочастотах. Например, микроволновые печи и беспроводные гарнитуры работают на тех же частотах, что и Wi-Fi 2.4 гГц. Поэтому они потенциальная помеха для нормальной работы Wi-Fi. Также следует иметь ввиду, что в многоквартирных домах у соседей тоже стоит Wi-Fi оборудование и, при стандартных настройках рабочие каналы этих устройств пересекаются. Это происходит из-за принципов работы самого устройства Wi-Fi. Дело в том, что основная частота в Wi-Fi маршрутизаторах делится на 13 каналов по 22 MHz каждая, а расстояние между каналами 5MHz. Каждый канал имеет нижнюю, центральную и верхнюю частоты. Когда верхняя частота первого канала пересекается с нижней частотой второго, то получается так называемая интерференция. Но в 2.4 GHz полосе частот есть три канала, которые не пересекаются: 1, 6, 11. Канал Нижняя частота Центральная частота Верхняя частота 1 2.401 2.412 2.423 6 2.426 2.437 2.448 11 2.451 2.462 2.473 Как видно из таблицы, верхние и нижние частоты указанных каналов не имеют общих частот. Поэтому рекомендуется в настройка маршрутизатора вручную выставлять один из этих каналов. На маршрутизаторах TP-Link это делает во вкладке Беспроводной режим (внешний вид интерфейса может отличаться в зависимости от модели оборудования) : Здесь из выпадающего списка каналов выбирается один из указанных выше. По умолчанию стоит Авто. А теперь перейдём к настройкам подключения к Интернету и безопасности. Первым делом рекомендуем сменить имя пользователя и пароли по умолчанию. Это предотвращает несанкционированный доступ к вашему устройству. Делается это на вкладке Системные инструменты->Пароль: Сейчас поговорим о подключении к Интернету, затем опять вернёмся к настройкам безопасности. Почти любое оборудование предоставляет мастера настройки, который позволяет простым кликом мыши настроить доступ в глобальную сеть: Нажимаем Далее и выставляем нужные значения. Тип подключения зависит от провайдера: Здесь в зависимости от вида услуги отмечаете нужную опцию. Если ADSL подключение, то выбираем PPPoE/PPPoE Россия. PPPoE это сетевой протокол канального уровня. Вкратце, здесь организовывается Point-to-Point туннель поверх Ethernet, а уже в туннель инкапсулируется трафик разных протоколов, IP в том числе. Если выбрали Динамический IP-адрес, то мастер переходит к пункту клонирование MAC адреса. Это нужно если вы уже подключались к сети провайдера напрямую через ноутбук, а теперь нужно подключить маршрутизатор. Но чаще всего эта функция не используется: В остальных случаях нужно вводить дополнительные данные. В случае PPPoE это логин и пароль, которые вы получили у провайдера. Далее переходим к настройке беспроводного подключения: После этого мастер переходит к финальному пункту, где просто нужно нажать на кнопку Завершить и настройки начнут применяться. А теперь снова о безопасности. Далее нам нужно отключить WPS. Эта функция позволяет быстро добавлять новые устройства, но такие программы как Dumpper используют эту возможность для взлома беспроводной сети. На первом пункте вкладки Беспроводной режим убираем галочку перед Включить широковещание SSID. В этом случае маршрутизатор не будет вещать свой SSID (название Wi-Fi), тогда вам придётся вручную вводить кроме пароля еще и название сети. Больше движений, зато безопасно. Так как та же программа Dumpper не сможет обнаружить вашу сеть, что усложнит её взлом: На пункте Защита беспроводного режима вкладки Беспроводной режим настраиваются параметры шифрования. Так как на рисунках все подробно описано, не буду вдаваться в подробности каждого пункта. Здесь установлены рекомендуемые настройки для домашней сети (пароль выбираем посложнее) Фильтрация MAC-адресов позволяет ограничивать подключение чужих устройств к вашей беспроводной сети. Выбираем Разрешить доступ станциям, указанным во включённых списках. Затем добавляете MAC-адреса устройств, которым разрешено подключаться к сети. MAC-адреса устройств можно посмотреть в настройках самих устройств или же, если уже подключены к вашей сети, можно просмотреть на вкладке DHCP -> Список клиентов DHCP. На вкладке Безопасность настраиваем разрешения на локальное и удалённое управление Wi-Fi маршрутизатором. Локальное управление лучше ограничивать для устройств, подключенных по Wi-Fi и разрешить только для конкретного устройства и только через физическое подключение. Для этого, если у вас есть ноутбук или ПК узнаем его MAC-адрес. На Windows машинах легче всего сделать это через командную строку набрав команду getmac. Вписываете полученное значение в строку MAC-1: Нажимаем сохранить и всё. Следует быть внимательным если на выводе консоли несколько значений. Если нет никаких виртуальных машин, а вы подключены через Ethernet порт, то перед MAC адресом указывается device id. Ну а если возникнут трудности можете просмотреть через Центр управления сетями и общим доступом на Панели управления, выбрав нужный адаптер и кликнув на кнопке Подробнее в открывшемся окне. Физический адрес и есть MAC-адрес. Удалённое управление лучше отключить: На этом, пожалуй, всё. Это базовые настройки безопасности. При необходимости можно прописать ACL (в зависимости от модели), настроить гостевую сеть, включить родительский контроль. Удачи!
img
В предыдущих статьях мы познакомились как управлять ресурсами AWS с помощью Terraform, в данной статье мы посмотрим, как создавать работающий web-сервер с помощью Terraform. Для развертывания настоящего боевого Web сервера, нам понадобится создать с помощью Terraform два ресурса. Инстанс EC2 и группу безопасности для того, чтобы открыть порт 80 во внешний мир. Для начала создадим новую директорию Lesson-2 и файл WebServer.tr. Вспоминаем именно данный файл с данным расширением является основным для написания кода и управления. Напоминаю, что это обычный текстовый файл, который редактируется с помощью любого текстового редактора в нашем случае мы будем использовать текстовый редактор nano. Mkdir Lesson-2 cd Lesson-2 nano WebServer.tr Сразу будем привыкать к оформлению кода и добавим в код комментарии, комментарии добавляются следующим образом. Ставим знак решетки # и за ней пишем комментарий. #----------------------------------------------- # Terraform # #Build WebServer during BootStrap #-------------------------------------------------- Для начала пишем, кто провайдер и регион для размещения наших ресурсов. provider "aws" { region = "eu-central-1" } Кстати, есть интересный сайт awsregion.info на котором можно посмотреть название регионов и место размещение. Сайт на момент написания статьи обновляется и поддерживается в актуальном состоянии. Так первый ресурс это инстанс EC2. Resource служебное слово, далее название ресурса в кавычках и имя, которое мы ему даем в кавычках, далее открываются и закрываются фигурные скобки. Именно между ними мы и будем описывать наш ресурс. Далее добавляем ami – который показывает, какой образ мы будем использовать. Instance_type – тип и размер ресурса, который мы будем использовать. В итоге смотрим, что у нас получилось в первой итерации кода: resource "aws_instance" "WebServer_my" { ami = "ami-0767046d1677be5a0" #Amazon Linux ami instance_type = "t2.micro" } В результате исполнения данной части у нас будет создан инстанс EC2. Далее создадим 2-й ресурс aws_security_group, фактически это правило сети для брандмауэра. Так же описание начинаем со служебного слова resource, далее название ресурса и имя ресурса в кавычках, а в конце открывающаяся и закрывающаяся скобка в которой пойдет описание ресурса. Указываем параметр name - этот параметр обязательный для корректного отображения, description – параметр не обязательный, но можем указать, vpc_id мы не указываем т.к используем ресурс vpc по умолчанию. Далее идет описание правил сетевых на языке Terraform. Служебный параметр ingress для входящего трафика с фигурными скобками где мы вставим порты и другие параметры данного параметра. И второй служебный параметр engress для исходящего трафика с фигурными скобками. Cidr_blocks = [“подсеть”], указывают откуда или куда разрешен данный поток трафика т.е подсеть 0.0.0.0/0 означает весь интернет или все подсети. Обратите внимание: Мы разрешили входящий трафик на 80 порт, тот порт на котором будет работать наш веб сервер. Мы разрешили входящий трафик на 22 порт, тот порт, который может принимать соединение для подключения по SSH протоколу. Мы разрешили ICMP трафик до нашего сервера, чтобы можно было из интернета проверить его доступность. Мы разрешили трафик на 443 порт, если мы в будущем захотим сделать защищенное HTTPS соединение. И мы разрешили весь исходящий трафик с сервера указав protocol “-1” В такой конфигурации кода Terraform мы получим два отдельных ресурса Инстанс EC2 и группу безопасности, но нас такой вариант не устроит. Нам необходимо, чтобы данная группа безопасности была автоматически присоединена к нашему серверу. Это можно сделать с помощью нового параметра, который мы добавим в первую часть кода, где мы описывали aws_instance. Данный параметр называется vpc_security_group_id, с помощью данного параметра можно сразу присоединить несколько групп безопасности, через знак равенства и скобки “= [“номер группы безопасности”]”. Например, номер группы безопасности можно взять той, что создается по умолчанию. Все остальные указываются, через запятую. Но в нашем случае данный вариант не подойдет, потому что у нас должно все подключиться автоматически, т.е присоединить ту группу безопасности, которая создастся и которую мы описали ниже. А делается это достаточно просто после знака = в квадратных скобках без кавычек вставляем aws_security_group – то что это группа безопасности, затем . – разделитель, затем вставляем имя группы безопасности, которую мы создали mywebserver, опять разделитель символ точки ., и мы ходим взять id. В итоге получается следующий параметр и его значение: vpc_security_group_ids = [aws_security_group.mywebserver.id] Этой самой строчкой мы привязали группу безопасности к нашему создаваемому инстансу. И как следствие возникла зависимость инстанса от группы безопасности. Следовательно, Terraform создаст сначала группу безопасности, а затем уже создаст инстанс. Код Terraform не выполняется сверху вниз, зачастую он исполняется в зависимости от зависимостей или вообще одновременно, когда многие части зависят друг от друга. Следовательно, вот в таком коде мы создали зависимость. По коду вы можете заметить, что если необходимо еще дополнительный порт открыть, например, в группе безопасности, то необходимо скопировать часть кода, отвечающую за открытие порта и добавить необходимые настройки, порт и протокол, подправить cidr_blocks. После корректировки вставить в правильное место, как параметр. И для того, чтобы завершить настройку нашего Web сервера, нам необходимо написать параметр user_data. В амазоне это называется bootstrapping, т.е начальная загрузка. User_data = <<EOF Скрипт EOF Как вы видите сам скрипт будет находится между EOF, а знак << говорит о том, что скрипт мы подаем на ввод. Далее, как любой скрипт в Linux системе мы пишем сначала интерпретатор или shell который будет исполнять и на языке понятном для bash. Поэтому в скрипте не должно быть никаких отступов! Это важно, даже если плагин текстового редактора пытается поправить. Теперь сам скрипт: user_data = <<EOF #!/bin/bash apt -y update apt -y install apache2 myip=`curl http://169.254.169.254/latest/meta-data/local-ipv4` echo "<h2>WebServer with IP: $myip</h2><br> Build by Terraform!" > /var/www/html /index.html sudo service httpd start chkconfig httpd on EOF Сначала обновляем систему apt –y update, далее команда apt –y install apache2 устанавливаем apache веб сервер непосредственно. Следующая строка присваиваем значение переменной myip, с помощью получения данных из самого амазона curl http://169.254.169.254/latest/meta-data/local-ipv4. Далее просто добавляем в индексную страницу по умолчанию вывод того что мы получили с подстановкой IP. Следующая строка стартует сервис, и последняя строка проверяет конфигурацию апача. Таким образом, мы получаем полностью готовый скрипт. Нам остается его сохранить в файле и инициализировать Terraform, командой terraform init и даем команду на применение terraform apply. В результате команды мы видим, что будет создано 2 ресурса, все, как и планировалось. Инстанс и группа безопасности. Как мы видим сначала, из-за зависимости создается группа безопасности. А затем поднимается инстанс, к которому и будет привязана данная группа. Спустя пару минут мы можем видеть, что у нас веб сервер поднялся. IP-адрес можно найти в консоли. Далее, если нам более данный Web сервер не нужен, то мы его можем уничтожить простой командой terraform destroy. И мы увидим, что из-за зависимостей ресурсы будут уничтожаться в обратном порядке тому, в котором они запускались. Сначала инстанс, потом группа безопасности. Скрипт вы можете легко модифицировать и добавить более сложные детали установки и настройки веб сервера – это полностью рабочая конфигурация.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59