По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитайте предыдущую статью про криптографический обмен ключами. Предположим, вы хотите отправить большой текстовый файл или даже изображение, и позволить получателям подтвердить, что он исходит именно от вас. Что делать, если рассматриваемые данные очень большие? Или что, если данные нужно сжать для эффективной передачи? Существует естественный конфликт между криптографическими алгоритмами и сжатием. Криптографические алгоритмы пытаются произвести максимально случайный вывод, а алгоритмы сжатия пытаются воспользоваться преимуществом неслучайности данных для сжатия данных до меньшего размера. Или, возможно, вы хотите, чтобы информация была прочитана кем-либо, кто хочет ее прочитать, что означает, что не нужно ее шифровать, но вы хотите, чтобы получатели могли проверить, что вы ее передали. Криптографические хэши предназначены для решения этих проблем. Возможно, вы уже заметили по крайней мере одно сходство между идеей хеширования и криптографического алгоритма. В частности, хэш предназначен для получения очень большого фрагмента данных и создания представления фиксированной длины, поэтому на выходе для широкого диапазона входных данных очень мало конфликтов. Это очень похоже на концепцию максимально близкого к случайному выходу для любого ввода, необходимого для криптографического алгоритма. Еще одно сходство, о котором стоит упомянуть, заключается в том, что хэш-алгоритмы и криптографические алгоритмы работают лучше с очень редко заполненным входным пространством. Криптографический хеш просто заменяет обычную хеш-функцию криптографической функцией. В этом случае хэш может быть вычислен и отправлен вместе с данными. Криптографические хэши могут использоваться либо с системами с симметричными ключами, либо с системами с открытым ключом, но обычно они используются с системами с открытым ключом. Сокрытие информации о пользователе Возвращаясь к начальным статьям, еще одна проблема безопасности - это исчерпание данных. В случае отдельных пользователей исчерпание данных можно использовать для отслеживания того, что пользователи делают, пока они находятся в сети (а не только для процессов). Например: Если вы всегда носите с собой сотовый телефон, можно отслеживать перемещение Media Access Control (MAC), когда он перемещается между точками беспроводного подключения, чтобы отслеживать ваши физические перемещения. Поскольку большинство потоков данных не симметричны - данные проходят через большие пакеты, а подтверждения передаются через небольшие пакеты, наблюдатель может обнаружить, когда вы выгружаете и скачиваете данные, и, возможно, даже когда вы выполняете небольшие транзакции. В сочетании с целевым сервером эта информация может дать хорошую информацию о вашем поведении как пользователя в конкретной ситуации или с течением времени. Этот и многие другие виды анализа трафика могут выполняться даже для зашифрованного трафика. Когда вы переходите с веб-сайта на веб-сайт, наблюдатель может отслеживать, сколько времени вы тратите на каждый из них, что вы нажимаете, как вы перешли на следующий сайт, что вы искали, какие сайты вы открываете в любое время и т. д. информация может многое рассказать о вас как о личности, о том, чего вы пытаетесь достичь, и о других личных факторах. Рандомизация MAC-адресов Institute of Electrical and Electronic Engineers (IEEE) первоначально разработал адресное пространство MAC-48 для назначения производителями сетевых интерфейсов. Эти адреса затем будут использоваться "как есть" производителями сетевого оборудования, поэтому каждая часть оборудования будет иметь фиксированный, неизменный аппаратный адрес. Этот процесс был разработан задолго до того, как сотовые телефоны появились на горизонте, и до того, как конфиденциальность стала проблемой. В современном мире это означает, что за одним устройством можно следить независимо от того, где оно подключено к сети. Многие пользователи считают это неприемлемым, особенно потому, что не только провайдер может отслеживать эту информацию, но и любой, кто имеет возможность прослушивать беспроводной сигнал. Один из способов решить эту проблему-позволить устройству регулярно менять свой MAC-адрес, даже, возможно, используя другой MAC-адрес в каждом пакете. Поскольку сторонний пользователь (прослушиватель) вне сети провайдера не может "угадать" следующий MAC-адрес, который будет использоваться любым устройством, он не может отслеживать конкретное устройство. Устройство, использующее рандомизацию MAC-адресов, также будет использовать другой MAC-адрес в каждой сети, к которой оно присоединяется, поэтому оно не будет отслеживаться в нескольких сетях. Существуют атаки на рандомизацию MAC-адресов, в основном сосредоточенные вокруг аутентификации пользователя для использования сети. Большинство систем аутентификации полагаются на MAC-адрес, поскольку он запрограммирован в устройстве, чтобы идентифицировать устройство и, в свою очередь, пользователя. Как только MAC-адрес больше не является неизменным идентификатором, должно быть какое-то другое решение. Места, где рандомизация MAC-адресов может быть атакована, - это Время (timing): если устройство собирается изменить свой MAC-адрес, оно должно каким-то образом сообщить другому абоненту беспроводного соединения об этих изменениях, чтобы канал между подключенным устройством и базовой станцией мог оставаться жизнеспособным. Должна быть какая-то согласованная система синхронизации, чтобы изменяющийся MAC-адрес мог продолжать обмен данными при изменении. Если злоумышленник может определить, когда произойдет это изменение, он сможет посмотреть в нужное время и обнаружить новый MAC-адрес, который принимает устройство. Порядковые номера (Sequence numbers): как и во всех транспортных системах, должен быть какой-то способ определить, все ли пакеты были получены или отброшены. Злоумышленник может отслеживать порядковые номера, используемые для отслеживания доставки и подтверждения пакетов. В сочетании с только что отмеченной атакой по времени это может обеспечить довольно точную идентификацию конкретного устройства при изменении MAC-адреса. Отпечатки информационных элементов (Information element fingerprints): каждое мобильное устройство имеет набор поддерживаемых функций, таких как установленные браузеры, расширения, приложения и дополнительное оборудование. Поскольку каждый пользователь уникален, набор приложений, которые он использует, также, вероятно, будет довольно уникальным, создавая "отпечаток" возможностей, которые будут сообщаться через информационный элемент в ответ на зонды от базовой станции. Отпечатки идентификатора набора услуг (SSID): каждое устройство хранит список сетей, к которым оно может подключиться в настоящее время, и (потенциально) сетей, которые оно могло достичь в какой-то момент в прошлом. Этот список, вероятно, будет довольно уникальным и, следовательно, может выступать в качестве идентификатора устройства. Хотя каждый из этих элементов может обеспечить определенный уровень уникальности на уровне устройства, комбинация этих элементов может быть очень близка к идентификации конкретного устройства достаточно часто, чтобы быть практически полезной при отслеживании любого конкретного пользователя, подключающегося к беспроводной сети. Это не означает, что рандомизация MAC-адресов бесполезна, это скорее один шаг в сохранении конфиденциальности пользователя при подключении к беспроводной сети. Луковая маршрутизация Луковая маршрутизация - это механизм, используемый для маскировки пути, а также шифрования пользовательского трафика, проходящего через сеть. Рисунок 1 используется для демонстрации. На рисунке 1 хост А хочет безопасно отправить некоторый трафик на K, чтобы ни один другой узел в сети не мог видеть соединение между хостом и сервером, и чтобы ни один злоумышленник не мог видеть открытый текст. Чтобы выполнить это с помощью луковой маршрутизации, A выполняет следующие действия: Он использует службу для поиска набора узлов, которые могут соединяться между собой, и предоставления пути к серверу K. Предположим, что этот набор узлов включает [B, D, G], хотя на рисунке они показаны как маршрутизаторы, скорее всего, это программные маршрутизаторы, работающие на хостах, а не выделенные сетевые устройства. Хост A сначала найдет открытый ключ B и использует эту информацию для создания сеанса с шифрованием с симметричным ключом B. Как только этот сеанс установлен, A затем найдет открытый ключ D и использует эту информацию для обмена набором симметричных ключей с D, наконец, построит сеанс с D, используя этот симметричный секретный ключ для шифрования защищенного канала. Важно отметить, что с точки зрения D, это сеанс с B, а не с A. Хост A просто инструктирует B выполнить эти действия от его имени, а не выполнять их напрямую. Это означает, что D не знает, что A является отправителем трафика, он знает только, что трафик исходит от B и передается оттуда по зашифрованному каналу. Как только этот сеанс будет установлен, A затем проинструктирует D настроить сеанс с G таким же образом, как он проинструктировал B настроить сеанс с D. D теперь знает, что пункт назначения-G, но не знает, куда будет направлен трафик G. У хоста A теперь есть безопасный путь к K со следующими свойствами: Трафик между каждой парой узлов на пути шифруется с помощью другого симметричного закрытого ключа. Злоумышленник, который разрывает соединение между одной парой узлов на пути, по-прежнему не может наблюдать трафик, передаваемый между узлами в другом месте на пути. Выходной узел, которым является G, знает пункт назначения, но не знает источник трафика. Входной узел, которым является B, знает источник трафика, но не пункт назначения. В такой сети только А знает полный путь между собой и местом назначения. Промежуточные узлы даже не знают, сколько узлов находится в пути-они знают о предыдущем и следующем узлах. Основная форма атаки на такую систему состоит в том, чтобы захватить как можно больше выходных узлов, чтобы вы могли наблюдать трафик, выходящий из всей сети, и соотносить его обратно в полный поток информации. Атака "Человек посередине" (Man-in-the-Middle) Любой вид безопасности должен не только изучать, как вы можете защитить информацию, но также учитывать различные способы, которыми вы можете вызвать сбой защиты данных. Поскольку ни одна система не является идеальной, всегда найдется способ успешно атаковать систему. Если вам известны виды атак, которые могут быть успешно запущены против системы безопасной передачи данных, вы можете попытаться спроектировать сеть и среду таким образом, чтобы предотвратить использование этих атак. Атаки "человек посередине" (MitM) достаточно распространены, и их стоит рассмотреть более подробно. Рисунок 2 демонстрирует это. Рисунок 2-б аналогичен рисунку 2-а с одним дополнением: между хостом A и сервером C расположен хост B, который хочет начать зашифрованный сеанс. Некоторыми способами, либо подменяя IP-адрес C, либо изменяя записи службы доменных имен (DNS), чтобы имя C преобразовывалось в адрес B, или, возможно, даже изменяя систему маршрутизации, чтобы трафик, который должен быть доставлен в C, вместо этого доставлялся в B, злоумышленник заставил B принять трафик, исходящий из A и предназначенный для C. На рисунке 2-б: Хост A отправляет полуслучайное число, называемое одноразовым номером, в C. Эту информацию получает B. Хост B, который злоумышленник использует в качестве MitM, передает этот одноразовый номер на узел C таким образом, что создается впечатление, что пакет действительно исходит от узла A. В этот момент злоумышленник знает одноразовый идентификатор, зашифрованный A. Злоумышленник не знает закрытый ключ A, но имеет доступ ко всему, что A отправляет зашифрованным с помощью закрытого ключа A. Сервер C также отправляет ответ с зашифрованным одноразовым случайным числом. B получает это и записывает. Хост B передает одноразовое случайное число, полученное от C, на A. Хост A по-прежнему будет считать, что этот пакет пришел непосредственно от C. Хост B вычисляет закрытый ключ с помощью A, как если бы это был C. Хост B вычисляет закрытый ключ с помощью C, как если бы это был A. Любой трафик, который A отправляет в C, будет получен B, что: Расшифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 5 на рисунке 2-б. Зашифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 6 на рисунке 2-б, и передайте их C. Во время этого процесса злоумышленник на B имеет доступ ко всему потоку в виде открытого текста между A и C. Ни A, ни C не осознают, что они оба построили зашифрованный сеанс с B, а не друг с другом. Такого рода атаки MitM очень сложно предотвратить и обнаружить.
img
Сетевая инфраструктура (роутеры, коммутаторы, МСЭ, АТС и так далее) являются очень важными ресурсами организации, и поэтому очень важно корректно настроить доступ к данным устройствам – для достижения нужного уровня защиты. Множество корпораций фокусируются на защите своих серверов, приложений, баз данных и прочих компонентов сети, но они могут совершенно забыть о том, что часть установленных у них устройств содержат, к примеру, дефолтные логин и пароль. К примеру, скомпрометированный маршрутизатор может доставить гигантское количество проблем – злоумышленники могут получить доступ к информации, трафик может улетать на другое направление и так далее. Так что корректная настройка устройств с точки зрения сетевой безопасности является крайне важным моментом при обеспечении защиты информации вашей организации. К примеру Cisco разделяет любое сетевое устройство на 3 функциональных плоскости, а именно: Плоскость менеджмента – это все о том, как непосредственно управлять железкой. То есть данная плоскость используется для доступа, настройки и мониторинга устройства. В нашей статье мы непосредственно расскажем, как защитить данную плоскость; Плоскость управления – данная плоскость содержит в себе сигнальные протоколы и процессы, которые отвечают за связность между устройствами – например такие известные вам протоколы как OSPF, EIGRP и так далее; Плоскость данных – плоскость, ответственная за перемещение информации по сети от источника до ее назначения. В данной плоскости и происходит, как правило, обмен пакетами между устройствами; Из этих трех плоскостей наиболее защитить первую и вторую плоскости, однако в нашей статье мы сконцентрируемся на плоскости менеджмента и обсудим 10 важных шагов по улучшению защищенности сетевого устройства Cisco с IOS. Десять пунктов ниже не являются избыточными, но они включают в себя наиболее важные команды и настройки, которые позволят «закрыть» устройство от нежелательного доступа и повысить степень защищенности. Данные пункты применимы как к маршрутизаторам, так и к коммутаторам. Создание секретного пароля В целях предоставления доступа к IOS устройству только людям, имеющим право (например, сисадмину/эникею/инженеру) всегда нужно создавать сложный «секретный» пароль (enable secret). Мы советуем придумать/сгенерировать пароль минимум 12 знаков, содержащий цифры, буквы и специальные символы. Проверьте, что вы вводите именно enable secret - тогда в конфиге пароль будет отображаться в зашифрованном виде. Router# config terminal Router(config)# enable secret сложныйпароль Зашифруйте пароли на устройстве Все пароли, настроенные на устройстве (за исключением «секретного»), не шифруются от слова совсем и легко видны в конфиге. Чтобы зашифровать все пароли в конфиге, необходимо использовать глобальную команду service password encryption Router# config terminal Router(config)# service password-encryption Используйте внешний сервер авторизации для аутентификации пользователей Вместо использования локальных учетных записей на каждом устройстве для доступа администратора, мы рекомендуем использование внешнего AAA сервера (TACACS+ или RADIUS) для обеспечения Аутентификации, Авторизации и Учета (вольный перевод Authentication, Authorization, Accounting). С централизованным ААА сервером гораздо проще управлять учетными записями, реализовывать политики безопасности, мониторить использование аккаунтов и многое другое. Ниже на схеме вы можете видеть как настроить TACACS+ и RADIUS серверы с использованием enable secret пароля в случае отказа этих серверов. TACACS+ Router# config terminal Router(config)# enable secret K6dn!#scfw35 //создаем “секретный ” пароль Router(config)# aaa new-model //включаем ААА службу Router(config)# aaa authentication login default group tacacs+ enable //Используем TACACS сервер и обычный пароль на случай отказа Router(config)# tacacs-server host 192.168.1.10 //указываем внутренний ААА сервер Router(config)# tacacs-server key ‘secret-key’ //указываем секретный ключ для ААА сервера Router(config)# line vty 0 4 Router(config-line)# login authentication default //применяем ААА аутентификацию для линий удаленного доступа (telnet, ssh) Router(config-line)# exit Router(config)# line con 0 //применяем ААА аутентификацию для консольного порта Router(config-line)# login authentication default RADIUS Router# config terminal Router(config)# enable secret K6dn!#scfw35 //создаем “секретный ” пароль Router(config)# aaa new-model //включаем ААА службу Router(config)# aaa authentication login default group radius enable //Используем RADIUS сервер и обычный пароль на случай отказа Router(config)# radius-server host 192.168.1.10 //указываем внутренний ААА сервер Router(config)# radius-server key ‘secret-key’ //указываем секретный ключ для ААА сервера Router(config)# line vty 0 4 Router(config-line)# login authentication default //применяем ААА аутентификацию для линий удаленного доступа (telnet, ssh) Router(config-line)# exit Router(config)# line con 0 //применяем ААА аутентификацию для консольного порта Router(config-line)# login authentication default Создайте отдельные аккаунты для пользователей Если у вас отсутствует возможность использовать внешний ААА сервер, по инструкции, описанной в предыдущем шаге, то как минимум, вам необходимо создать несколько отдельных локальных аккаунтов для всех, у кого должен быть доступ к устройству. Приведем пример создания трех локальных аккаунтов для троих системных администраторов. Кроме того, в версии IOS начиная с 12.2(8)T и позднее, есть возможность настроить повышенную надежность паролей (Enhanced Password Security) для локальных учетных записей – это зашифрует пароли с помощью MD5 хэша. Ниже пример настройки трех учетных записей: Router# config terminal Router(config)# username efstafiy-admin secret Lms!a2eZf*%_rete Router(config)# username evlampiy-admin secret d4N3%sffeger Router(config)# username vova-admin secret 54sxSFT*&_(!zsd Настройте лимит возможных попыток подключения Для того, чтобы избежать взламывания вашей учетной записи на маршрутизаторе с помощью брутфорса, вы можете настроить ограничение количества попыток подключения, когда после определенного предела система заблокирует пользователя. Это работает для локальных учетных записей. Router# config terminal Router(config)# username john-admin secret Lms!a2eZSf*% Router(config)# aaa new-model Router(config)# aaa local authentication attempts max-fail 5 //max 5 failed login attempts Router(config)# aaa authentication login default local Открытие доступа на управление устройством только для определенных IP – адресов Данный пункт является одним из наиболее важных для сетевых устройств Cisco – необходимо оставить доступ к Telnel или SSH только для определенных сетевых адресов (например, рабочей станции системного администратора). В нашем примере сисадмин находится в пуле 192.168.1.0/28 Router# config terminal Router(config)# access-list 10 permit 192.168.1.0 0.0.0.15 Router(config)# line vty 0 4 Router(config)# access-class 10 in //применить ограничения на все VTY линии (SSH/Telnet) Включить логирование Логирование является очень полезной функцией для отслеживания, аудита и контроля инцидентов. Вы можете включить логирование во внутренний буфер устройства или на внешний лог-сервер. Вторая опция является более предпочтительной, так как вы можете хранить там больше информации и проще производить различного рода аналитику. Всего существует 8 уровней логирования (от 0 до 7), каждый из которых делает лог более насыщенным деталями. Лучше всего избегать 7 уровень логирования (дебаг), т.к это может легко потратить все ресурсы вашего устройства. Ниже пример, как включить логирование и на внешний сервер, и на сам девайс (можно использовать два варианта одновременно). Router# config terminal Router(config)# logging trap 6 //Включить 6 уровень логирования для логов, отправляемых на внешний сервер Router(config)# logging buffered 5 //Включить 5 уровень логирования для логов, хранимых на самом девайсе Router(config)# service timestamps log datetime msec show-timezone //Включить таймстампы с милисекундной точностью Router(config)# logging host 192.168.1.2 //Отправлять логи на внешний сервер Router(config)# logging source-interface ethernet 1/0 //Использовать интерфейс Eth1/0 для отправки логов Включение NTP (Network Time Protocol) Данный шаг необходим для корректной работы логирования – т.к вам необходимо синхронизированное и точное системное время на всех сетевых устройствах, для правильного понимания ситуации при траблшутинге. Вы можете использовать как публичный, так и свой собственный NTP cервер. Router# config terminal Router(config)# ntp server 3.3.3.3 Router(config)# ntp server 4.4.4.4 Использование безопасных протоколов управления По умолчанию, протоколом, с помощью которого можно управлять устройством является Telnet. Однако весь трафик передается в незашифрованном виде – поэтому предпочтительно использовать SSH. Важно – для использования SSH необходимо настроить хостнейм и доменное имя, а также сгенерировать SSH ключи. Также следует разрешить только протокол SSH на VTY линиях Защитить SNMP доступ Про SNMP мы писали в одной из наших статей – это протокол для управления сетью, который, однако, также может служить «дырой» для доступа в вашу сеть. Для защиты данного направления, вам необходимо установить сложную Community String (что-то вроде пароля для SNMP) и разрешить доступ только с определенных рабочих станций. Давайте настроим две Community String – одну с правами на чтение, и другую с правами на чтение и изменение. Также добавим ACL с нужными сетевыми адресами. Router# config terminal Router(config)# access-list 11 permit 192.168.1.0 0.0.0.15 Router(config)# access-list 12 permit 192.168.1.12 Router(config)# snmp-server community Mer!0nET RO 11 //создание community string с правами на чтение и использование ACL 11 для SNMP доступа Router(config)# snmp-server community Mer!0NeTRules RW 12 //создание community string с правами на чтение/запись и использование ACL 12 для SNMP доступа Команды выше позволят сети сисадмина 192.168.1.0/28 иметь доступ на чтение и хосту 192.168.1.12 иметь полный доступ на SNMP чтение / запись к устройствам.
img
Многоуровневый коммутатор будет использовать информацию из таблиц, которые созданы (плоскость управления) для построения аппаратных таблиц. Он будет использовать таблицу маршрутизации для построения FIB (информационной базы пересылки) и таблицу ARP для построения таблицы смежности. Это самый быстрый способ переключения, потому что теперь у нас есть вся информация уровня 2 и 3, необходимая для пересылки аппаратных пакетов IP. Давайте посмотрим на информационную таблицу о пересылке и таблицу смежности на некоторых маршрутизаторах. Будем использовать ту же топологию, что и ранее. 3 роутера и R3 имеет интерфейс loopback0. Будем использовать статические маршруты для полного подключения: R1(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R1(config)#ip route 192.168.23.0 255.255.255.0 192.168.12.2 R2(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R3(config)#ip route 192.168.12.0 255.255.255.0 192.168.23.2 Это статические маршруты, которые мы будем использовать. Теперь посмотрим на таблицу маршрутизации и FIB: show ip cef показывает нам таблицу FIB. Вы можете видеть, что есть довольно много вещей в таблице FIB. Ниже даны разъяснения по некоторым из записей: 0.0.0.0/0 - это для интерфейса null0. Когда мы получим IP-пакеты, соответствующие этому правилу, то оно будет отброшено. 0.0.0.0 /32 - это для всех-нулевых передач. Забудьте об этом, так как мы больше не используем его. 3.3.3.0 /24 - это запись для интерфейса loopback0 R3. Обратите внимание, что следующий переход - это 192.168.12.2, а не 192.168.23.3, как в таблице маршрутизации! 192.168.12.0/24 - это наша непосредственно подключенная сеть. 192.168.12.0/32 зарезервировано для точного сетевого адреса. 192.168.12.1/32 - это IP-адрес на интерфейсе FastEthernet 0/0. 192.168.12.2/32 - это IP-адрес на интерфейсе FastEthernet 0/0 R2. 192.168.12.255/32 - это широковещательный адрес для сети 192.168.12.0/24. 224.0.0.0/4 - соответствует всему многоадресному трафику. Он будет удален, если поддержка многоадресной рассылки отключена глобально. 224.0.0.0/24 - соответствует всему многоадресному трафику, зарезервированному для трафика управления локальной сетью (например, OSPF, EIGRP). 255.255.255.255/32 - широковещательный адрес для подсети. Давайте подробно рассмотрим запись для network 3.3.3.0/24: Номер версии говорит нам, как часто эта запись CEF обновлялась с момента создания таблицы. Мы видим, что для достижения 3.3.3.0/24 нам нужно перейти к 192.168.23.3 и что требуется рекурсивный поиск. Следующий прыжок-192.168.12.2. Он также говорит, что это valid cached adjacency (допустимая кэшированная смежность). Существует целый ряд различных смежностей: Null adjacency: используется для отправки пакетов в интерфейс null0. Drop adjacency: это для пакетов, которые не могут быть переданы из-за ошибок инкапсуляции, маршрутов, которые не могут быть разрешены, или протоколов, которые не поддерживаются. Discard adjacency: это относится к пакетам, которые должны быть отброшены из-за списка доступа или другой политики. Punt adjacency: используется для пакетов, которые отправляются на плоскость управления для обработки. Пакеты, которые не пересылаются CEF, обрабатываются процессором. Если у вас есть много таких пакетов, то вы можете увидеть проблемы с производительностью. Вы можете видеть, сколько пакетов было обработано процессором: Вы можете использовать команду show cef not-cef-switched, чтобы проверить это. Количество пакетов указано по причине: No_adj: смежность не является полной.. No_encap: Информация об ARP является неполной. Unsupp’ted: пакет имеет функции, которые не поддерживаются. Redirect: Перенаправление ICMP. Receive: Это пакеты, предназначенные для IP-адреса, настроенного на интерфейсе уровня 3, пакеты, предназначенные для нашего маршрутизатора. Options: В заголовке пакета есть параметры IP-адреса. Access: ошибка сравнения со списком доступа Frag: ошибка фрагментации пакетов Мы также можем взглянуть на таблицу смежности, в которой хранится информация уровня 2 для каждой записи: Вы можете использовать команду show adjacency summary, чтобы быстро посмотреть, сколько у нас есть смежностей. Смежность - это отображение от уровня 2 до уровня 3 и происходит из таблицы ARP. R1#show adjacency Protocol Interface Address IP FastEthernet0/0 192.168.12.2(9) R1 имеет только один интерфейс, который подключен к R2. Вы можете увидеть запись для ip 192.168.12.2, который является интерфейсом FastEthernet 0/0 R2. Давайте увеличим масштаб этой записи: Мы видим там запись для 192.168.12.2 и там написано: CC011D800000CC001D8000000800 Что означает это число? Это MAC-адреса, которые нам нужны, и Ethertype ... давайте разберем поподробнее его: CC011D800000 - это MAC-адрес интерфейса R2 FastEthernet0 / 0 CC001D800000 - это MAC-адрес интерфейса R1 FastEthernet0/0. 0800 - это Ethertype. 0x800 означает IPv4. Благодаря таблицам FIB и смежности у нас есть вся информация уровня 2 и 3, которая нам требуется для перезаписи и пересылки пакетов. Имейте в виду, что перед фактической пересылкой пакета мы сначала должны переписать информацию заголовка: Исходный MAC-адрес. Конечный MAC-адрес. Контрольная сумма кадров Ethernet. TTL IP-пакета. Контрольная сумма IP-пакетов. Как только это будет сделано, мы сможем переслать пакет. Теперь у вас есть представление о том, что такое CEF и как обрабатываются пакеты. Возникает вопрос, а в чем разница между маршрутизаторами и коммутаторами, поскольку многоуровневый коммутатор может маршрутизировать, а маршрутизатор может выполнять коммутацию. Различие между устройствамистанвится все меньше, но коммутаторы обычно используют только Ethernet. Если вы покупаете Cisco Catalyst 3560 или 3750, то у вас будут только интерфейсы Ethernet. У них есть ASICs, поэтому коммутация кадров может выполняться со скоростью линии связи. С другой стороны, маршрутизаторы имеют другие интерфейсы, такие как последовательные каналы связи, беспроводные сети, и они могут быть модернизированы модулями для VPN, VoIP и т. д. Вы не сможете настроить такие вещи, как NAT/PAT на (маленьком) коммутаторе. Однако грань между ними становится все тоньше Маршрутизаторы используются для маршрутизации, коммутаторы уровня 2-для коммутации, но многоуровневые коммутаторы могут выполнять комбинацию того и другого. Возможно, ваш коммутатор выполняет 80% коммутации и 20% маршрутизации или наоборот. TCAM можно "запрограммировать" на использование оптимальных ресурсов с помощью шаблонов SDM. SDM (Switching Database Manager) используется на коммутаторах Cisco Catalyst для управления использованием памяти TCAM. Например, коммутатор, который используется только для коммутации, не требует никакой памяти для хранения информации о маршрутизации IPv4. С другой стороны, коммутатору, который используется только в качестве маршрутизатора, не потребуется много памяти для хранения MAC-адресов. SDM предлагает ряд шаблонов, которые мы можем использовать на нашем коммутаторе, вот пример коммутатора Cisco Catalyst 3560: Выше вы можете видеть, что текущий шаблон является "desktop default", и вы можете видеть, сколько памяти он резервирует для различных элементов. Вот пример других шаблонов: Вот шаблоны SDM для коммутатора. Мы можем изменить шаблон с помощью команды sdm prefer: Вы должны перезагрузить устройство прежде, чем он вступит в силу: SW1#reload Теперь давайте еще раз проверим шаблон: По сравнению с шаблоном "desktop default" мы теперь имеем двойное хранилище для одноадресных MAC-адресов. Однако для маршрутов IPv4 ничего не зарезервировано. Это хорошая идея, чтобы установить шаблон SDM, для того чтобы соответствовать необходимому использованию вашего коммутатора. Если вы делаете как коммутацию, так и маршрутизацию и не уверены в том, какой шаблон выбрать, то вы можете посмотреть на текущее использование TCAM, вот как это сделать: На данном рисунке многое не отображено, но вы можете видеть, как заполняется TCAM в данный момент. Теперь вам есть что сравнить с шаблонами SDM.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59