По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Задержка в сети, или сетевая задержка, - это временная задержка при передаче запросов или данных от источника к адресату в сетевой экосистеме. Давайте посмотрим, как вы можете выявить и устранить задержку в сети.  Любое действие, которое требует использование сети, например, открытие веб-страницы, переход по ссылке, открытие приложения или игра в онлайн-игру, называется активностью. Активность пользователя – это запрос, а время отклика веб-приложения – это время, которое требуется для ответа на этот запрос.  Временная задержка также включает в себя время, которое сервер тратит на выполнение запроса. Таким образом, временная задержка определяется как круговой путь – время для записи, обработки и получения пользователем запроса, где он уже декодируется.  Понятие «низкое значение задержки» относится к относительно недлительным временным задержкам при передаче данных. А вот длительные задержки, или чрезмерные задержки, не слишком приветствуются, так как они ухудшают процесс взаимодействия с пользователем.  Как исправить задержку в сети? На просторах Интернета есть большое количество инструментов и программных средств, которые могут помочь в анализе и устранении неполадок в сети. Некоторые из них платные, некоторые бесплатные. Впрочем, есть инструмент под названием Wireshark – бесплатное приложение с общедоступной лицензией, которое используется для перехвата пакетов данных в режиме реального времени. Wireshark – это самый популярный и самый часто используемый в мире анализатор сетевых протоколов. Это приложение поможет вам перехватывать сетевые пакеты и отображать их детальную информацию. Вы можете использовать эти пакеты для проведения анализа в режиме реального времени или в автономном режиме после того, как сетевые пакеты уже будут перехвачены. Это приложение поможет вам исследовать сетевой трафик под микроскопом, фильтруя и углубляясь в него в попытках найти корень проблемы. Оно помогает с сетевым анализом, и, как следствие, с сетевой безопасностью.  Что может вызывать задержку в сети? Есть несколько основных причин медленного сетевого подключения. Вот некоторые из них: Большая задержка Зависимости приложений Потеря пакетов Перехватывающие устройства Нерациональные размеры окон В данной статье мы рассмотрим каждую из вышеприведенных причин задержки в сети, а также посмотрим, как можно решить эти проблемы с помощью Wireshark. Проверка с помощью Wireshark Большая задержка Понятие «большая задержка» подразумевает время, которое требуется для передачи данных от одной конечной точки к другой. Влияние большой задержки на передачу данных по сети очень велико. На приведенной ниже диаграмме в качестве примера показано время кругового пути при загрузке файла по пути с высокой задержкой. Время задержки кругового пути часто превышает одну секунду, что является недопустимым.  Перейдите к разделу Wireshark Statistics. Выберите опцию TCP stream graph. Выберите Round Trip time graph, чтобы посмотреть, сколько времени необходимо для загрузки файла.  Wireshark используют для расчета времени кругового пути для того, чтобы определить, это ли является причиной плохой работы коммуникационной сети протокола управления передачей (TCP - Transmission Control Protocol). TCP используется для разных целей, например, для просмотра веб-страниц, передачи данных, протокола передачи файлов и многого другого. В большинстве случаев операционную систему можно настроить так, чтобы на каналах с большой задержкой она работала более эффективно, особенно когда хосты используют Windows XP. Зависимости приложений Некоторые приложения имеют зависимости, то есть они зависят от каких-то других приложений, процессов или от обмена данными с хостом. Допустим, что ваше приложение – это база данных, и оно зависит от подключения к другим серверам, которое необходимо для получения элементов базы данных. В таком случае слабая производительность на этих «других серверах» может негативно повлиять на время загрузки локального приложения.  Рассмотрим, например, просмотр веб-страниц при условии, что целевой сервер ссылается на несколько других веб-сайтов. Например, чтобы загрузить главную страницу сайта  www.espn.com , вы должны сначала посетить 16 хостов, которые обеспечивают главную страницу рекламой и наполнением.  На приведенной выше картинке показано окно «HTTP/Load Distribution» в Wireshark. В нем отображается список всех серверов, которые использует главная страница сайта  www.espn.com .  Потеря пакетов Потеря пакетов – это одна из самых часто встречающихся проблем в сети. Потеря пакетов происходит, когда пакеты данных неправильно доставляются от отправителя к получателю через Интернете. Когда пользователь посещает некий веб-сайт и начинает загружать элементы сайта, потерянные пакеты вызывают повторную передачу, что увеличивает скорость загрузки веб-файлов и замедляет при этом общий процесс загрузки.  Более того, потеря пакетов оказывает крайне негативное влияние на приложение, когда оно использует протокол TCP. Когда TCP-соединение обнаруживает потерянный пакет, то скорость передачи данных автоматически снижается, чтобы компенсировать сетевые проблемы.  Потом скорость постепенно восстанавливается до более приемлемого уровня до следующего потерянного пакета, что снова приведет к существенному снижению скорости передачи данных. Загрузка объемных файлов, которая должна была легко проходить по сети, если бы не было потерянных пакетов, теперь заметно страдает от их наличия.  Что это значит – «пакет потерян»? Это неоднозначный вопрос. Если программа работает через протокол TCP, то потеря пакетов может быть обнаружена двумя способами. В первом варианте получатель отслеживает пакеты по их порядковым номерам и, таким образом, может обнаружить отсутствующий пакет. В таком случае клиент делает три запроса на этот отсутствующий пакет (двойное подтверждение), после чего он отправляется повторно. Во втором варианте потерянный пакет обнаруживает отправитель, когда понимает, что получатель не подтвердил получение пакета данных, и по истечении времени ожидания отправляет пакет данных повторно.  Wireshark указывает, что произошла перегрузка сети, а многократные подтверждения провоцируют повторную передачу проблематичного трафика, который выделен цветом. Большое количество продублированных подтверждений указывают на то, что пакет(ы) были потеряны, а также на существенную задержку в сети.  Для того, чтобы повысить производительность сети, важно определить точное место потери пакетов. Когда Wireshark обнаружил потерю пакетов, он начинает перемещаться по пути следования пакетов до тех пор, пока не найдет место их потери пакетов. На данный момент мы находимся «у истоков» точки потери пакетов, поэтому знаем, на чем нужно сосредоточиться при отладке.  Перехватывающие устройства Сетевые перехватчики – это связующие устройства, такие как коммутаторы, маршрутизаторы и брандмауэры, которые заняты выбором направления передачи данных. При потере пакетов эти устройства необходимо проверить, потому что они могли стать причиной утери.  Задержка может возникнуть при работе этих связующих устройств. Например, если установлен приоритет трафика, то дополнительная задержка может возникнуть в потоке с низким уровнем приоритета.  Неэффективные размеры окон Вдобавок к операционной системе Windows, в сетях TCP/IP есть и другие «окна». Скользящее окно Окно получателя Окно отслеживания перегрузок сети Все эти окна совместно отражают производительность сети на основе протокола TCP. Давайте посмотрим, что из себя представляет каждое из этих окон, и определим, как они влияют на пропускную способность сети.  Скользящее окно Скользящее окно используется для широковещательной передачи последующих TCP-сегментов по сети по мере подтверждения данных. Как только отправитель получает подтверждение о том, что получатель получил переданные фрагменты данных, скользящее окно расширяется. До тех пор, пока в сети не обнаружатся потерянные данные, передавать можно достаточно большие объемы данных. При потере пакета скользящее окно сжимается, так как сеть уже не может справиться с таким большим объемом данных.  Окно получателя Окно получателя TCP-стека – это пространство буфера. Когда данные получены, они сохраняются в этом буферном пространстве до тех пор, пока приложение их не перехватит. Окно получателя начинает заполняться, когда приложение не успевает принимать данные, что приводит к сценарию «нулевого окна». Когда получатель объявляет о состоянии «нулевого окна», вся передача данных на хост должна быть остановлена. Пропускная способность падает до нуля. Метод масштабирования окна (RFC 1323) позволяет хосту увеличить размер окна получателя и снизить вероятность наступления сценария «нулевого окна».  На приведенной выше картинке продемонстрирована 32-секундная задержка сетевого соединения из-за сценария «нулевого окна». Окно отслеживания перегрузок сети Окно отслеживания перегрузок сети определяет максимально возможный объем данных, с которым может справиться сеть. На это значение влияют следующие факторы: скорость передачи пакетов отправителя, количество потерянных пакетов в сети и размер окна получателя. В процессе корректной работы сети окно постоянно увеличивается до тех пор, пока передача данных не завершится или пока она не достигнет «потолка», установленного работоспособностью сети, возможностями передачи отправителя или размером окна получателя. Каждое новое соединение запускает процедуру согласования размера окна заново.  Рекомендации для хорошей работоспособности сети Изучите, как можно использовать Wireshark в качестве меры первой помощи, чтобы можно было быстро и эффективно находить источник низкой производительности Определите источник задержки в сети и по возможности сократите ее до приемлемого уровня Найдите и устраните источник потери пакетов Проанализируйте размер окна передачи данных и по возможности уменьшите его Проанализируйте производительность перехватывающих устройств для того, чтобы посмотреть, увеличивают ли они задержку или, возможно, отбрасывают пакеты Оптимизируйте приложение, чтобы оно могло передавать большие объемы данных и, если это возможно, извлекать данные из окна получателя  Заключение В данной статье мы рассмотрели самые основные причины проблем с производительностью сети. Но есть один немаловажный фактор, который просто нельзя упускать, - это непонимание того, как работает передача данных по сети. Wireshark предоставляет визуализацию сети так же, как рентген или компьютерная томография, которая предоставляет визуализацию человеческого тела для точной и быстрой диагностики. Wireshark стал критически важным инструментом, который способен помочь в обнаружении и диагностике проблем в сети.  А теперь проверьте и устраните проблемы с производительностью своей сети с помощью нескольких фильтров и инструментов Wireshark.
img
Сегодня в статье будет описан процесс установки и базовой настройки OpenVPN Access Server – полнофункциональное VPN SSL решение, которое включает в себя непосредственно OpenVPN сервер, веб-интерфейс для управления и клиенты для разных операционных систем – Windows, Mac, Android, IOS, Linux. Во встроенной бесплатной лицензии доступен функционал для одновременного подключения двух пользователей, и, при гибком использовании, этого хватит для реализации множества задач. Пошаговое видео Официальный сайт и процесс установки У OpenVPN Access Server (далее – OVPN AS) есть официальный сайт - https://openvpn.net/ , на котором можно найти множество информации об установке OVPN AS на облачный сервер – вроде платформы Amazon Cloud (Amazon Web Services), на Linux-based операционную систему или на виртуальную машину. : В нашем случае устанавливать будем на CentOS 6 версии, и, для этого необходимо перейти по ссылке Access Server Software Packages, там выбрать CentOS и разрядность ОС, в данном случае – CentOS 6 amd/x86 32-bit. Данная ссылка ведет на RPM-пакет, поэтому проще всего скопировать ссылку и далее скачать пакет с помощью команды wget (но об этом немного ниже). Как альтернативный путь установки – можно скачать на ваш ПК данный пакет и с помощью чего-то вроде WinSCP перенести файл на ваш сервер. Но, как мне кажется, с помощью wget это сделать на порядок быстрее и проще. Далее подключаемся к серверу через терминал, например, Putty, и вводим команду, которая сохранит RPM пакет с OVPN AS в папку tmp в файл под названием ovpn.rpm: wget -O /tmp/ovpn.rpm http://swupdate.openvpn.org/as/openvpn-as-2.1.4-CentOS6.i386.rpm Осталось немного – далее необходимо установить данный пакет. Для начала переходим в нужную директорию с помощью команды cd /tmp и затем выполняем команду rpm -i ovpn.rpm. После чего возможна небольшая пауза, вы увидите, как происходит установка пакета, в конце вы должны увидеть подтверждение, что всё в порядке. Последний шаг, который необходимо сделать перед доступом к веб-интерфейсу – нужно поменять пароль на пользователе openvpn. Делается это следующей командой: passwd openvpn %ваш_пароль%. Если пароль будет простой, то ОС ругнётся – на это можно не обращать внимания. Настройка OpenVPN Access Server с помощью веб-интерфейса Сначала требуется зайти на веб-интерфейс: необходимо ввести адрес https://serveripaddress:943/admin – обратите внимание на обязательность https соединения и 943 порт – это очень важно. Если наберете без /admin попадете в пользовательский интерфейс. Вы, возможно, увидите предупреждение от браузера о небезопасности соединения – можете смело игнорировать. Попав на страницу аутентификации, вводите логин openvpn и пароль, который вы установили в предыдущем шаге. Вам должна открыться следующая картина: Краткое описание каждого из разделов: Status - общее состояние вашего VPN-сервера, пользователи, использующие сервис в данный момент, логи; Configuration - конфигурация сервера – от лицензий до настроек веб-сервера и отказоустойчивости; User Management - создание и управление пользователями и группами пользователей; Authentication - настройка аутентификации и ее различных методов; Tools - различные инструменты для проверки работоспособности, документация, тех. поддержка; Первым делом идем по следующему пути Authentication → General и меняем метод аутентификации на Local: Далее необходимо создать пользователя. Для этого нужно пройти по следующему пути: User Management → User Permissions → Add Extension → Choose IAX Extension и ввести имя нового пользователя(в нашем случае - Fedulya) и немного правее нажать Show . В поле Local Password ввести пароль, остальное все можно оставить по умолчанию. Как заключительный шаг настройки, необходимо ввести ваш внешний IP-адрес во вкладке Server → Network → Settings, остальные настройки уже необходимо гибко выбирать в зависимости от ваших нужд – если у вас появятся вопросы, то оставляйте их в комментариях, с радостью ответим. Важно – по умолчанию вам доступно только две лицензии для одновременного использования, поэтому создание множества юзеров без покупки дополнительных лицензий не имеет большого смысла Заключение Теперь можно зайти в пользовательский интерфейс по адресу https://serveripaddress:943/ ввести логин и пароль свежесозданного на предыдущем шаге пользователя и выбрать опцию «Connect». Далее произойдет установка клиента и автоматически загрузится ваш профиль. Как итог – в трее должно появиться диалоговое сообщение «Connected». Более подробно можете ознакомиться с процессом подключения в нашем видео про настройку OpenVPN Access Server
img
Подключения прибора Для подключения прибора к измеряемому потоку используются разъемы на задней (или верхней) стенке прибора: Tx OUTliUT выход, или передача прибора подключить к Rx (прием) измеряемого потока; Rx INliUT вход, или прием прибора подключить к Tx (передача) измеряемого потока. На левой стенке расположен разъем EXT PWR для подключения адаптера внешнего питания. Прибор продолжительное время (несколько часов) может работать от встроенных аккумуляторов. Включение прибора Нажать клавишу <On> - через 2-3 секунды прибор включится. В правом верхнем углу указано название текущего меню. В нижней части дисплея указано назначение функциональных клавиш в данном режиме (смотри рисунок). При включении прибора отображается главное меню "Main menu". Если вы не знаете, в каком меню находитесь и что делать дальше, нажмите кнопку <Main menu>. Далее, следуйте инструкции. Контроль потока и подключения В главном меню (Main menu) нажать кнопку <-more-> (клавиша S6), до появления в левом нижнем углу пункта меню <Monit>. Выбрав данный пункт (клавишей S1), вы попадаете в меню мониторинга, где возможно контролирование потока и отдельного канального интервала. В правом верхнем углу отображается состояние потока: No signal нет сигнала на входе прибора. Возможно перепутаны прием/передача оборудования, или неисправен соединительный шнур; AIS сигнал удаленной аварии. На дальнем конце измеряемый поток не нагружен; Frame sync loss потеря цикловой синхронизации. Прибор принимает не тот сигнал, который передает. Возможно отсутствует шлейф на дальнем конце, или подключен не тот поток. *Words* - "слова". Аварии отсутствуют - прибор принимает передаваемый им сигнал и готов к проведению измерений. Проведение измерений Для измерения потока E1 необходимо выполнить следующее: Выйти в главное меню нажатием кнопки <MAIN MENU> Нажать Menu1, основные параметры, убедиться, что выставлены параметры: Первый столбец: [Mode] режим, возможны значения: RX/TX прием/передача, измерения по завороту; RX прием, измерения на рабочем потоке, параллельно; THROUGH через, поток пропускается через прибор; DELAY. Для измерений по завороту необходимо выбрать режим RX/TX [Interface] - G.703 интерфейс G.703; [Line code] - HDB3линейный код HDB3; [Framing] - liCM30формат кадра ИКМ-30; liCM-31 с использованием 16-го ки; OFFбез цикловой структуры. Рекомендации по выбору режима: выставить PCM-31. Если прибор не может засинхронизироваться, возникает аварийная сигнализация переключить в режим PCM-30. При невозможности проведения измерений в данном режиме возможно(но не рекомендуется) проведение измерений без цикловой структуры (режим OFF). [Termination] 75/120Ω - сопротивление интерфейса 75/120 Ом; [Tx Clc src] - INTERNисточник синхронизации передачи внутренний или FROM RX от сигнала приема; [Kblis] - 2048 скорость передачи 2048 кбит/с; Второй столбец: [V.11 slot] - OFF ввод/вывод данных в какой-либо канальный интервал посредством интерфейса V.11 откл.; [Rx slots] - канальные интервалы, по которым производится измерения, принимает значения: OFF откл; 1(С1) - 1 канальный интервал (можно использовать любой ки от 1 до 31, не заблокированный в данном режиме); nx64 несколько канальных интервалов, в данном режиме возможен выбор нескольких или всех канальных интервалов для проведения измерений. При выборе пункта <nx64> открывается меню "Rx Slots (BERT)", в котором производится выбор канальных интервалов: ALL выбрать все Clear очистить выбор (действие, обратное предыдущему) Select выбрать ки, обозначенный курсором De-select отменить выбор ки, обозначенного курсором Return возврат в предыдущее меню Рекомендации по выбору ки: как правило, измерения проводятся по полному потоку, то есть должны быть выбраны все канальные интервалы, последовательность действий: <Rx slots> <nx64> <ALL> <Return> [Rx audio] OFF канальный интервал, который будет прослушиваться через встроенный динамик. Возможно указание любого ки, или отключение опции.На ход измерений не влияет; [Rx signaling] OFF; [Tx slots] - канальные интервалы, по которым передается тестовая последовательность. Возможны режимы: OFF - откл. передача не осуществляется; USER - по выбору пользователя; AS RX - в соответствии с приемом. Выбраны те канальные интервалы, которые контролируются по приему; IDLE - свободно, передается последовательность IDLE (задается в следующем меню, обозначает неиспользуемые ки); 1(С1) - 1 канальный интервал (можно использовать любой ки от 1 до 31, не заблокированный в данном режиме). Рекомендации по выбору ки: рекомендуется выбрать режим <AS RX> Примечание: в режиме Framing OFF параметры второго столбца отсутствуют. В режиме Framing PCM31 параметр Rx signaling отсутствует. Перейти в следующее меню menu2, параметры тестовой последовательности: Параметры по умолчанию: [Idle liattern] 0110 1010; [Bert liattern] 215 -1; [Bert signaling] 1010; [Idle signaling] 1010; Bits/Block - 1000; NFAS/NMFAS - norm; Tx logic - norm; Rx logic - norm. Некоторые параметры могут отсутствовать в зависимости от выбора режима Framing. Ничего изменять не нужно. Перейти в следующее меню menu3, проконтролировать параметры: [Current test] - текущее измерение, при многократных измерениях для сохранения результатов номер измерения следует поменять на следующий. Например, если произведено измерение под № 5, то при следующем измерении следует установить №6. Тогда в ячейке №5 результаты сохранятся; [Timer] - On таймер включен. В меню Timer необходимо задать продолжительность тестирования, для этого необходимо навести указатель на пункт Timer, нажать <edit> - откроется timer menu: [Start time] - manual запуск теста - вручную; [Duration] - продолжительность. Userзадана пользователем, далее необходимо указать продолжительность тестирования: 0 days (дни) 0 hrs (часы) 15 mins (минуты). При необходимости возможен режим Continпродолжительный, до остановки пользователем. Далее нажать Return, чтобы вернуться в предыдущее меню. [Autolirint] - Off - автоматическая печать выключена; G.821 - ITU-T - контроль по протоколу G.821 включен, согласно рекомендации ITU-T; [Alarms] All on - контроль аварий все аварии; [Resolution] - HRS/MINS - частота записи результатов часы/минуты; [Beelier] - Off; [Err inject] - Ratio - ввод ошибок. Нажать кнопку <Run> - запуск. Начнутся измерения. На экране появляется информация о производимых измерениях: правая часть экрана краткая информация о параметрах измерений, левая часть экрана надпись ОКили присутствующие аварии и зафиксированные ошибки. RX/TX - режим измерений; G.703, liCM31 - основные параметры измерений; Rx - звездочкой обозначены измеряемые канальные интервалы, если стоит точка канальный интервал пропускается; Total seconds - время в секундах, прошедшее с начала измерений; Bit err ratio - коэффициент битовых ошибок. Перенос результатов измерений в ПК По завершении измерений на экране отображаются краткие результаты. Для переноса измерений на компьютер необходимо: Выключить прибор и перенести его к месту установки компьютера. Подключить прибор к компьютеру, для этого: порт V.24/RS-232 прибора (с правой стороны) подключить через переходной соединительный кабель к com-порту компьютера. Запустить на компьютере программу HyperTerminal. (В программе HyperTerminal должен быть задан номер com-порта, к которому подключен прибор и параметры соединения: скорость 9600 бит/с; биты данных 8, четность нет; стоповые биты 1; управление потоком Xon/Xoff) Включить прибор. Найти пункт меню "Memory". Если его нет, можно нажать кнопку <more>, для отображения других возможностей меню до появления нужной кнопки. В меню "Memory" отображаются все сохраненные результаты, установить курсор на нужном пункте (можно определить по дате и времени измерений) Нажать <Results>, на экране появятся результаты измерений, нажать кнопку <Print>, результаты будут переданы в окно HyperTerminal. Из окна программы результаты можно скопировать и вставить в любой текстовый документ: WordPad (блокнот) или Microsoft Word. _____________________________________________________________________________ ACTERNA E1 SERVICE TESTER EST-125 09:32 11 Mar 2011 _____________________________________________________________________________ Printout of menu settings *Setup Menu 1* Mode RX/TX Interface G.703 Line code HDB3 Framing PCM31C Termination 75/120 Ohm Tx Clk source INTERN kbps 2048 V.11 OFF Rx slots BERT-Rx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Rx audio OFF Tx slots AS RX *Setup Menu 2* Idle pattern 0000 0000 BERT pattern 2^15-1 Bits/Block 1000 Rx logic NORM Tx logic NORM *Setup Menu 3* Autoprint OFF G.821 ITU-T Multiframe ITU-T Alarms USER Resolution HRS/MINS *Alarm Display* AIS ON Fr Sync ON All ones ON All zeros ON Patt loss ON Patt Inv Slip ON Dist Fr ON Bit error ON CRC err ON FAS err ON Code err ON _____________________________________________________________________________ ACTERNA E1 SERVICE TESTER EST-125 09:33 11 Mar 2011 _____________________________________________________________________________ Printout of test results for test number 2 Start time 09:25 10 Mar 2011 Stop time 09:25 11 Mar 2011 Total test time (seconds) 86400 Line rate 2047994 Total code errors received 0 Total mean Code Error Ratio 0.000E 0 Bit rate 1983995 Total bits received 1.174E 11 Total errors received 0 Total mean Bit Error Ratio 0.000E 0 Total blocks received 1.174E 8 Total block errors received 0 Total mean Block Error Ratio 0.000E 0 Seconds of no signal 0 Seconds of AIS Seconds of pattern sync loss 0 Seconds of Pattern Inverted 0 Seconds of all ones 0 Seconds of all zeros 0 Seconds of slip 0 Seconds of frame sync loss 0 Seconds of distant frame alarm 0 Total FAS word errors 0 Total number of frames 0 Total number of frames 6.912E 8 Total mean FAS word error ratio 0.000E 0 Total CRC word errors 0 Available time 86400 100.00000% Unavailable time 0 0.00000% Error free seconds 86400 100.00000% Errored seconds PASS 0 0.00000% Severely errored seconds PASS 0 0.00000% Severely errored seconds PASS 0 0.00000%
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59