По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
На инсталляционном носителе Windows находится не только операционная система, но и связанные с ней драйвера и компоненты системы. Все это хранится в файле, называемом - файл образ. Во время инсталляции этот образ применяется к целевому тому. Образы Windows используют формат файлов Windows Imaging (WIM), который имеет следующие преимущества: Методы развертывания. Можно развернуть wim-файлы с помощью загрузочного USB-накопителя, из общего сетевого ресурса или с помощью специализированных технологий развертывания, таких как Службы развертывания Windows (WDS) или System Center Configuration Manager. Редактируемость. Можно подключить образ к текущей ОС и редактировать его, включать, отключать или удалять роли и компоненты операционной системы, если это необходимо. Возможность обновления. Имеется возможность обновить текущий образ, не создавая захват операционной системы. Установочный носитель Windows Server 2019 содержит два WIM-файла - это Boot.wim и Install.wim. Файл Boot.wim использует для загрузки среды предустановки, которая запускается в момент развертывания Windows Server 2019. Install.wim хранит один или несколько образов операционной системы. Например, как показано на рисунке ниже, файл Install.wim содержит четыре разных выпуска Windows Server 2019. В зависимости от специфики оборудования, бывает ситуация, в которой потребуется добавить дополнительные драйверы в файл boot.wim. Например, потребуется добавить дополнительные драйвера, если процедура установки Windows не сможет получить доступ к устройству, на которое будет устанавливаться, поскольку драйвер этого устройства не включен в образ загрузки по умолчанию. Модификация Windows образа Deployment Image Servicing and Management (DISM) - это приложение командной строки. Программа работает с образами в автономном состоянии. Dism используется для реализации следующих задач: Просмотр, добавление или удаление ролей и компонентов Добавление, удаление обновлений Добавление, удаление драйверов Добавление, удаление приложений Windows *.appx К примеру, можно скопировать файл Install.wim с дистрибутива Windows Server и используя Dism.exe примонитировать образ, добавить новые драйвера и обновления программного обеспечения к этому образу и сохранить или отменить эти изменения, и все это без необходимости выполнять фактическое развертывание ОС. Преимущество заключается в том, что, когда используется этот обновленный образ для развертывания, добавленные драйвера и обновления уже применяются к образу, и не нужно устанавливать их отдельно как часть процедуры настройки после установки. На сайте каталога Центра обновления Майкрософт (https://catalog.update.microsoft.com) хранятся все сертифицированные драйвера оборудования, обновления программного обеспечения и исправления, опубликованные Microsoft. После загрузки драйверов и обновлений программного обеспечения их можно добавить к существующим установочным образам с помощью Dism.exe или соответствующих командлетов PowerShell в модуле DISM PowerShell. Обслуживание образа Windows Для уменьшения времени установки и настройки системы на новых серверах, нужно убедиться в тем, чтобы образы развертывания поддерживались в актуальном состоянии. К образу должны быть применены последние обновления программного обеспечения, а также должны быть включены все новые драйверы устройств для часто используемого серверного оборудования. Если не поддерживать образ развертывания в актуальном состоянии, потребуется дополнительное время на установку драйверов и обновлений. Применение обновлений после развертывания требует значительного времени, а также существенно увеличивает сетевой трафик. Одна из целей при выполнении развертывания сервера должна заключаться в том, чтобы как можно быстрее запустить сервер и включить его в работу. Программа DISM может использоваться для обслуживания текущей операционной системы в оперативном состоянии или для автономного обслуживания образа Windows. Обслуживание включает в себя выполнение следующих шагов: Монтирование образа для изменения Обслуживание образа Фиксация или отмена внесенных изменений Подключение образа Примонтировав образ, появляется возможность вносить в него изменения, такие как добавление и удаление драйверов, установка обновлений, включение компонентов системы. Обычно WIM-файл содержит несколько образов операционных систем. Каждому образу присваивается порядковый номер, который необходимо знать, прежде монтировать образ. Номер индекса можно определить с помощью Dism.exe с параметром /Get-wiminfo. Например, если дистрибутив ОС скопирован в D:Images, можно использовать следующую команду, чтобы получить список находящихся в нем образов: Dism.exe /get-wiminfo /wimfile:d:imagessourcesinstall.wim Тот же самый результат можно получить, используя командлет PowerShell Get-WindowsImage. Get-WindowsImage -ImagePath d:imagessourcesinstall.wim Когда нужный индекс операционной системы определен, монтируем этот образ программой Dism.exe c параметром /Mount-image. Например, чтобы смонтировать редакцию Standard Edition Windows Server 2019 из файла Install.wim, который доступен в папке D:Mount, введите следующую команду: Dism.exe /mount-image /imagefile:d:imagessourcesinstall.wim /index:2 /mountdir:c:mount В качестве альтернативы можно использовать команду Mount-WindowsImage: Mount-WindowsImage -ImagePath D:imagessourcesinstall.wim -index 2 -path c:mount Интеграция драйверов и обновлений После того, как образ подключен, можно приступить к его обслуживанию. Наиболее распространенными задачами являются добавление в образ драйверов устройств и обновлений программного обеспечения. Чтобы добавить драйвера к подключенному образу используется Dism с параметром /Add-Driver. Чтобы не добавлять каждый драйвер по отдельности, используется параметр /Recurse, чтобы все драйверы находились в папке и подпапках добавлялись в образ. Например, чтобы добавить все драйвера, расположенные в папке и подпапках D:Drivers к образу, смонтированному в папке C:Mount, используйте следующую команду: Dism.exe /image:c:mount /Add-Driver /driver:d:drivers /recurse Командлет Add-WindowsDriver выполнит тоже действие: Add-WindowsDriver -Path c:mount -Driver d:drivers -Recurse Параметр /Get-Driver используется для просмотра всех добавленных драйверов, а /Remove-Driver позволяет удалить драйвер из образа. В PowerShell это командлеты Get-WindowsDriver и Remove-WindowsDriver соответственно. Удалять можно только те драйвера, которые были добавлены в образ. Параметр /Add-Package позволяет добавляет обновления в формате *.cab или *.msu. Обновления программного обеспечения доступны на сайте Центра обновления Майкрософт в формате *.msu. Загрузим обновление с веб-сайта каталога Центра обновления Майкрософт под названием "2019-10 Cumulative Update for Windows Server, version 1903 for x64-based Systems (KB4517389) в папку D:updates на компьютере и применим обновление к образу. Dism.exe /image:c:mount /Add-Package /PackagePath:"d:updateswindows10.0-kb4517389-x64_6292f6cb3cdf039f01410b509f8addcec8a89450.msu " Тоже самое можно сделать используя PowerShell команду Add-WindowsPackage: Add-WindowsPackage -path c:mount -packagepath "d:updateswindows10.0-kb4517389-x64_6292f6cb3cdf039f01410b509f8addcec8a89450.msu" Добавление ролей и компонентов Для просмотра ролей и компонентов в смонтированном образе используется параметр /Get-Features. Команда выглядит следующим образом: Dism.exe /image:c:mount /Get-Features Используя параметры /Enable-Feature и /Disable-Feature можно включать или отключать компоненты. Пример ниже включит NetFramework в текущем образе. Dism.exe /image:c:mount /Enable-Feature /all /FeatureName:NetFx3ServerFeatures Сохранение изменений После внесения всех изменений в образ, их нужно сохранить, используя параметры /Unmount-Wim и /Commit. Параметр, отменяющий изменения - /Discard. Чтобы внести изменения и затем зафиксировать образ, смонтированный в папке C:mount, выполним команду: Dism.exe /Unmount-Wim /MountDir:c:mount /commit После применения изменений, win файл будет обновлен. Затем его можно импортировать в Windows Deployment Services (WDS) или использовать его с загрузочным usb носителем для развертывания Windows Server 2019 с уже примененными обновлениями, изменениями и драйверами.
img
Атака MITM обычно выполняется во внутренней корпоративной сети. Злоумышленник использует этот тип атаки с целью перехвата конфиденциальной информации, которая передается между устройствами. Как вы понимаете, «человек посередине» (Man-in-the-middle) — это просто указание на то, где находится злоумышленник. Он располагается между устройством (устройствами) жертвы и получателем. Машина злоумышленника используется для перехвата всех сообщений между жертвой получателем. Большинство пользователей не знают о незащищенных сетевых протоколах, которые используются для передачи их сообщений от источника к получателю. Эти незащищенные протоколы передают сообщения в виде обычного текста, позволяя злоумышленнику перехватить и просмотреть фактические данные. Чтобы лучше понять, как работает MITM-атака, давайте посмотрим на следующий рисунок: Как показано на предыдущем рисунке, если PC1 захочет отправить какие-либо данные через Интернет, они отправляются на шлюз по умолчанию, которым является R1. Кроме того, для всех коммуникаций, которые происходят в локальной сети, устройства пересылают сообщения, используя MAC-адрес назначения, найденный в кадре, а не IP-адрес назначения. IP-адрес назначения важен только тогда, когда сообщение должно быть переадресовано за пределы локальной сети, например, в другую подсеть или удаленную сеть. Следовательно, когда PC1 захочет отправить сообщение через Интернет, он пересылает сообщение на MAC-адрес назначения, известный как BBBB.BBBB.BBBB, который принадлежит R1. Когда R1 должен пересылать какие-либо сообщения (пакеты) на PC1, он будет использовать MAC-адрес назначения AAAA.AAAA.AAAA. Таким образом, изначально сообщения на машину злоумышленника не отправляются. Злоумышленник может использовать уязвимость в протоколе разрешения адресов (Address Resolution Protocol - ARP), чтобы гарантировать, что все сообщения, которыми обмениваются между PC1 и R1, отправляются через его машину, как показано на следующем рисунке: Протокол ARP работает между уровнем 2 (канальный уровень) и уровнем 3 (уровень Интернета) стека протоколов TCP/IP. Он предназначен для преобразования IP-адреса в MAC-адрес потому, что коммутаторы не могут считывать адресацию уровня 3, например IP-адресацию внутри пакета. Коммутаторы могут только читать MAC-адреса и пересылать кадры на основе MAC-адреса назначения, найденного в заголовке кадра уровня 2. По этой причине ARP необходим в любой сети. Когда устройство, такое как PC1, не знает MAC-адрес целевого хоста, такого как R1, оно будет отправлять ARP-запрос в сеть, спрашивая, у кого есть MAC-адрес для конкретного пункта назначения, как показано на следующем рисунке: Запрос ARP отправляется на все устройства. Только устройство, имеющее IP-адрес назначения, ответит ARP-ответом, содержащим его MAC-адрес, как показано на следующем рисунке: Затем MAC-адрес временно сохраняется в кэше ARP исходного устройства, PC1. Исходное устройство затем вставляет MAC-адрес назначения в заголовок кадра уровня 2 перед размещением сообщения в сети. Коммутатор, который получает сообщение от PC1, проверяет MAC-адрес назначения, найденный в заголовке уровня 2, и пересылает сообщение на хост назначения. Злоумышленник может обманом заставить PC1 поверить в то, что он — это R1, а также заставить R1 думать, что он — это PC1. Злоумышленник может притвориться PC1 для R1 и наоборот. С технической точки зрения злоумышленник выдает себя за другую машину в сети — это называется подменой MAC-адресов. Кроме того, злоумышленник отправит безвозмездное сообщение ARP, содержащее ложное сопоставление IP-адресов и MAC-адресов. Каждое сообщение создается специально для PC1 и R1. Безвозмездное сообщение ARP — это ответ, который не был инициирован запросом ARP. Другими словами, это когда одно устройство отправляет обновление ARP без запроса. Это позволяет злоумышленнику выполнять атаку с подменой ARP и отправлять ложные сообщения ARP устройствам, заставляя их вставлять неверные сопоставления IP-адресов в MAC-адреса в их кэш ARP. Это известная уязвимость, обнаруженная в ARP и TCP/IP. На следующем рисунке показано, как злоумышленник отправляет безвозмездное сообщения ARP на PC1 и R1: Это приведет к тому, что весь трафик между PC1 и R1 будет отправлен на атакующую машину, что приведет к атаке MITM. На следующем скриншоте показан пример инструмента тестирования на проникновение, известного как arpspoof, который используется для отправки бесплатных сообщений ARP на хост-устройства в сети для создания атак MITM: Как показано на предыдущем скриншоте, инструмент постоянно заполняет компьютер жертвы (10.10.10.11) и шлюз по умолчанию (10.10.10.1) ложными сведениями о сопоставлении IP-адресов с MAC-адресами. На следующем рисунке показан захват Wireshark, отображающий ложные сообщения ARP, отправляемые по сети: Обратите внимание, как Wireshark выделил сообщения желтым цветом как подозрительные для изучения. Существует множество функций безопасности уровня 2, которые уже предварительно загружены в коммутаторы Cisco IOS, и все они могут быть реализованы специалистом по безопасности. Вот некоторые из этих функций безопасности: Port security: Port security используется для фильтрации неавторизованных MAC-адресов от входа в интерфейс коммутатора. Dynamic ARP Inspection (DAI): DAI проверяет информацию об адресе IP-to-MAC, найденную в пакете, поступающем в коммутатор. Если будет найдено поддельное сообщение, коммутатор отклонит его, чтобы защитить сеть уровня 2. IP Source Guard: это еще одна функция безопасности, которая позволяет устройствам Cisco разрешать в сети только IP-адреса доверенных источников, предотвращая атаки с подменой IP-адресов.
img
OpenAPI Spec – излюбленный выбор экспертов по разработке API, особенно если главным приоритетом является безопасность. Инструментарий Swagger в этом отношении кажется хорошим вспомогательным средством. Однако пытаться совместить эти два понятия – настоящая задача. Вы, наверное, уже запутались? Не беспокойтесь. Эта статья поможет вам во всем разобраться. OpenAPI: хронология его создания OpenAPI – это всемирно признанная проектная спецификация RESTful API, разработанная под эгидой OpenAPI Initiative. Лучшие игроки IT-индустрии, такие как Google, Capital One, SmartBear, Microsoft, Apigee и PayPal, вместе запустили этот проект. Сама спецификация также поддерживается Linux Foundation. OpenAPI также известен как коммерчески нейтральный и независимый от языка интерфейс для RESTful API. Он широко используется для того, чтобы пользователи и машины могли взаимодействовать без фактического доступа к документации, фрагментам исходного кода или аудита перегрузки сети. Хронология создания (2009) – OpenAPI и Swagger появились благодаря Тони Тэму, специалисту по программному обеспечению. Первоначально он запустил спецификацию Swagger с открытым исходным кодом для использования в компании. (2011) – первая версия пользовательского интерфейса Swagger смогла описать JSON API для Wordnik. Она может использовать консоль разработчика/документацию компании, интеграцию кода и функции генерации кода. (2012) – появилась усовершенствованная, но все же еще бета, версия. (2014) – самая первая формализованная и официальная версия Swagger Spec0 была представлена публике в 2014 году. Она получила высокую оценку пользователей API. (2015) – SmartBear приобрела Swagger Spec. (2016) – Swagger стал «Спецификацией OpenAPI» и был переведен в другой репозиторий Git. (2017) – входит в OpenAPI Initiative На сегодняшний день уже доступна версия 3.1.0, которая пока считается лучшей. Для этой версии важно структурирование и форматирование API. Она выполняет процесс аутентификации и авторизации в соответствии со схемами аутентификации HTTP. Помимо этого, аутентификация и авторизация пользователя могут быть выполнены путем отправки ключей API в качестве заголовка или файлов cookie. Также у вас есть возможность использовать методы обнаружения OAuth 2 или OpenID Connect из версии 3.1.0. Swagger: история и инструментарий Swagger – это, по своей сути, тип языка описания интерфейса, разработанный для эффективного определения процедур использования RESTful API. Он использует в своей основе JSON. Набор инструментов Swagger включает в себя несколько инструментов с открытым исходным кодом и несколько коммерческих инструментов, которые могут использоваться в течение стандартного жизненного цикла API. Говоря без преувеличений, набор инструментов Swagger упрощает написание API. О его популярности можно судить по одному лишь факту – на 2017 год инструменты Swagger загружались более 100 000 раз в день. В инструментарий Swagger вошли такие инструменты как: SwaggerCore – это набор библиотек Java для подготовки, использования и развертывания определений OpenAPI. Конечные пользователи могут использовать Swagger Editor с целью написания или модификации спецификаций OpenAPI на основе YAML через популярные веб-браузеры. С ним вы можете улучшить читаемость документации, провести предварительный просмотр от лица конечных пользователей и модифицировать ее, чтобы устранить ошибки и сделать ее более удобной в использовании. Страницы HTML, JS и CSS в репозитории Swagger UI упрощают процесс написания документации. Если вам необходим хороший инструмент для проектирования и документирования, то правильным выбором будет SwaggerHub. Его часто используют специалисты для всех типов проектов OpenAPI. Swagger Parser позволяет анализировать определения. Swagger Codegen – это инструмент для создания заглушек сервера API, SDK и других документов. С помощью Swagger Inspector можно проверить процесс создания определения OpenAPI. Это поможет вам улучшить этот процесс благодаря тщательному тестированию. Swagger vs OpenAPI: топ-4 отличия Давайте начнем с основ: OpenAPI = Спецификация для правильного определения и описания RESTful API. Swagger = Набор инструментов, используемый для развертывания спецификаций API. Swagger допускает комбинацию host+base_path для одного сервера. С другой стороны, OpenAPI позволяет добавлять несколько URL-адресов серверов и путей поддоменов для того, чтобы упростить вашу жизнь. Все инструменты Swagger используют OpenAPI; обратное также должно быть верно. Инструменты Swagger сохранили свои первоначальные названия, несмотря на то, что Swagger изменил название на спецификацию OpenAPI. Общее влияние Swagger и OpenAPI на создателей API и API-отрасль Когда Тони Тэм создавал Swagger, он даже предположить не мог, что в будущем изменит представление о безопасности API и API-отрасли в целом. С течением времени OpenAPI Spec и Swagger стали именами нарицательными при упоминании RESTful API. Поскольку OpenAPI является бесплатным средством с открытым исходным кодом, которое предлагается пользователям API, то у начинающих разработчиков есть возможность научиться большему и показать весь свой потенциал. У разработчиков-новичков есть множество возможностей для работы и оттачивания своих навыков разработки API. Главной задачей разработчиков оставалось поддержание стандартов безопасности на каждом этапе разработки API. Количество взломов API растет с каждым днем. Крупные предприятия, такие как Cisco Systems, Facebook и Shopify, регулярно сталкиваются с уязвимостями API и изо всех сил пытаются укрепить свою систему безопасности. Нарушение API в Equifax, которое стоило компании судебного иска в размере 700 миллионов долларов, вынудило предприятия лучше следить за безопасностью ИИ. Использование OpenAPI положительно повлияло на методы разработки API, поскольку позволило команде разработчиков говорить на одном языке и, соответственно, легко общаться. Разработчикам больше не требуется убирать назначение API из ключевого функционала или исходного кода. Принятие предопределенных стандартов безопасности является вполне осуществимой задачей, поскольку созданный API может взаимодействовать на простом языке и не вызывает беспокойства при обнаружении возможных брешей и угроз безопасности. Что предлагают Swagger и OpenAPI на сегодняшний день? OpenAPI, а равно и Swagger, на сегодняшний день являются движущей силой API-индустрии. Оин упрощают создание серверной заглушки для API. Разработчики могут создавать библиотеки клиентских API на более, чем 40 языках. Они расширяют возможности разработки API и повышают его безопасность за счет: Создания интерактивного API: Разработчики могут использовать OpenAPI для написания интерактивной документации. Мало того, он позволяет запускать тесты API непосредственно из браузера во время подготовки документа. Поддержки инструментов генерации кода: OpenAPI – это великое благословение, поскольку он полезен при создании серверных SDK и клиентских CDK на нескольких языках программирования. Он хорошо работает с инструментами генерации кода. Аудита: OpenAPI Spec хорошо работает совместно с инструментом Contract Audit, который контролирует защиту операций, связанных с данными API. Фактически, этот инструмент является отличным ресурсом для обеспечения безопасности высокого уровня. При совместной работе OpenAPI Spec и Contract Audit выявление проблем безопасности в созданном API и их аудит становятся не такими утомительными. Можно выполнить аудит API с самого начала и избавить себя от аудита огромного количества API в конце разработки. Куда держит курс Swagger? OpenAPI – важная утилита, и эксперты рынка утверждают, что она имеет хорошие перспективы. Однако небольшая часть людей все же считает, что Swagger теряет свой лоск после передачи ключевых спецификаций OpenAPI. Учитывая, что на сегодняшний день он используется и играет решающую роль во многих задачах, особенно в тестировании API и повышении уровня безопасности, они могут ошибаться. Инструменты Swagger позволяют наглядно увидеть код и протестировать практическую ценность фрагментов кода в режиме реального времени. Благодаря пользовательскому интерфейсу Swagger, разработчикам стало еще проще, чем когда-либо, запускать команды и получать всестороннее представление о функциональных возможностях системы. Поддержание стандартизации в написании API также возможно с помощью Swagger, поскольку он совместно с OpenAPI предлагает всемирно признанный набор стандартов создания API. Инструменты Swagger также могут помочь в написании API с нуля. Используя Swagger Editor, можно тестировать API в режиме реального времени. Это позволяет пользователям проверять проектное решение утилиты на соответствие спецификации OAS OpenAPI и узнать текущий визуальный результат. Лучшее свойство этого инструмента заключается в том, что его можно использовать из любой точки. Также Swagger Inspector является одним из важнейших инструментов из набора Swagger, поскольку он позволяет создавать свои собственные спецификации API. Возможно не только создание настраиваемых API, но и передача этих API другим членам команды. Когда речь идет о безопасности API в Интернете, то лучшее решение – это Swashbuckle. Это реализация Swagger с открытым исходным кодом, позволяющая конечным пользователям создавать живую документацию для всех своих API. Этот инструмент синхронизирует документацию с вашей текущей версией API и сокращает риски безопасности до нуля. Заключение Поскольку OpenAPI сформировался из Swagger, то тут явно было где запутаться. Первая утилита предназначена для описания RESTful API. Это хороший инструмент с точки зрения безопасности, поскольку он сохраняет спецификацию в машиночитаемой форме. С другой стороны, вторая утилита – на сегодняшний день это фаворит разработчиков в случаях, когда речь идет о коммерчески нейтральном развертывании OpenAPI Spec. Надеюсь, что когда в следующий раз вы услышите эти два понятия, то не запутаетесь и правильно разберетесь в фактах. Они оба оказывают положительное влияние на API-отрасль и способствуют развитию API.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59