По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой статье вы узнаете о различных инструментах управления Kubernetes, которые можно использовать для управления кластерами Kubernetes. В формирующейся облачной инфраструктуре Kubernetes повсюду, без сомнения, он стал стандартом для оркестрации контейнеров. Но обеспечение согласованной и безопасной работы нескольких кластеров Kubernetes, представляет собой новый набор проблем. Поэтому возникает потребность в инструментах управления Kubernetes. Давайте рассмотрим некоторые популярные решения для эффективного управления Kubernetes. Что такое DevOps, что нужно знать и сколько получают DevOps - специалисты? 1. K9s k9s - панель мониторинга ресурсов на основе терминалов. Он имеет только интерфейс командной строки. Все что делали через веб-интерфейс панели мониторинга Kubernetes, вы можете сделать с помощью этой утилиты панели мониторинга терминала k9s. Он постоянно следит за кластером Kubernetes и предлагает команды для работы с определенными ресурсами кластера. Ниже приведены K9s функции: Отслеживание состояния кластера в реальном времени Настройка вида с помощью обложек K9s Легкий переход между ресурсами Kubernetes Параметры развертывания для проверки проблем с ресурсами кластера Предоставляет расширенные подключаемые модули для создания собственных команд 2. Rancher Rancher - платформа управления контейнерами с открытым исходным кодом, которая позволяет любому предприятию легко перенять Kubernetes. Вы можете развертывать и управлять облачными кластерами Kubernetes, работающими в GKE (GCP), EKS (AWS), AKS (Azure), или просто развертывать Kubernetes на виртуальных или физических машинах на ваш выбор. Rancher упрощает все повседневные обязанности администратора, включая: Мониторинг работоспособности кластеров Настройка оповещений и уведомлений Включение централизованного ведения журнала Определение и применение глобальных политик безопасности Установление аутентификации и применение наших политик обратной связи Управление инфраструктурой и ее масштабирование По мере ускорения внедрения Kubernetes в вашей компании, Кancher поощряет быстрое внедрение предоставления пользователям доступа непосредственно к Kubernetes API и CLI. Новый интеллектуальный интерфейс Rancher упрощает управление приложениями; команды могут легко развертывать рабочие нагрузки и управлять ими, определять объекты типа Секрет и управлять частными репозиториями, настраивать требования постоянных томов, настраивать балансировку нагрузки и обнаружение служб, управлять конвейерами CI. 3. Dashboard + Kubectl + Kubeadm Панель управления Kubernetes представляет собой веб-интерфейс для развертывания контейнерных приложений. Он ищет и устраняет неисправности приложений и управляет кластером вместе с ресурсами. С помощью панели мониторинга можно получить обзор приложений, запущенных в кластере, а также создать или изменить отдельные ресурсы Kubernetes, такие как задания развертывания, наборы реплик и многое другое. Можно масштабировать развертывание или инициировать скользящее обновление, или даже перезапустить модуль или развернуть новые приложения с помощью мастера развертывания на панели мониторинга. Kubectl - это средство командной строки для взаимодействия со службой API и отправки команд на главный узел. Его скрытые команды для вызовов API на сервер cluster API Kubernetes. Kubeadm - это инструмент со встроенными командами для запуска минимального кластера Kubernetes. Он используется для начальной загрузки кластера, а не для подготовки компьютеров. С помощью kubeadm можно выполнить некоторые основные команды для загрузки кластера, создания маркера для присоединения к кластеру, возврата изменений, внесенных в кластер Kubernetes, и т.д. 4. Helm Helm - менеджер пакетов для Kubernetes. Она позволяет разработчикам и операторам упаковывать, настраивать и развертывать приложения и службы в кластере Kubernetes. Он дает операторам больший контроль над кластерами Kubernetes, которые включают: Упрощение, стандартизацию и многократное использование развертывания приложений Простое описание сложных приложений с помощью диаграмм helm Повышение производительности разработчиков Снижение сложности развертывания Повышает эксплуатационную готовность Ускорение внедрения облачных приложений Упрощает откат к предыдущей версии Helm использует диаграммы, содержащие все определения ресурсов, для запуска приложений или служб в кластере Kubernetes. Здесь можно найти несколько helm диаграмм. 5. KubeSpray KubeSpray - это диспетчер жизненного цикла кластера, который помогает развернуть готовый к эксплуатации кластер Kubernetes. Для автоматизации выделения ресурсов кластеров Kubernetes используется ansible-playbook. Вот некоторые функции, которые включает в себя KubeSpray: Основан на Ansible Высокая доступность Кроссплатформенность Уровень производства Возможность интеграции как с популярными поставщиками облачных инфраструктур, так и с железом Различные опции конфигурации Много платформенный CI/CD Безопасность по умолчанию По умолчанию Kubespray позволяет удаленно подключаться к кластеру Kubernetes через IP-адрес kube-master и порт 6443. Kubespray лучше всего подходит, если вам нужна гибкость в развертывании; он предоставляет множество пользовательских опций конфигурации. Также, если вы знакомы с Ansible, то использование Kubespray вам покажется очень простым. 6. Kontena Lens Kontena Lens - умная приборная панель для Kubernetes. Это единственная система управления, которая вам понадобится, чтобы взять под контроль ваш Kubernetes. Он бесплатно доступен для операционных систем Mac OS, Windows и Linux. После запуска приложения Lens в интерфейсе появится список всех связанных кластеров. Это самая мощная IDE для людей, которые действительно должны иметь дело с Kubernetes ежедневно. Вы можете обеспечить правильную настройку и настройку кластеров, а также более простую и быструю работу с кластерами и радикальное повышение производительности и скорости бизнеса. Функции IDE Kontena Lens: Возможность управления несколькими кластерами одновременно Визуализация состояния кластера в реальном времени Предоставляет встроенный терминал Очень простая установка, поскольку это автономное приложение Потрясающие возможности пользовательского интерфейса и пользователя Поддерживается Kubernetes RBAC. Протестировано для обработки почти 25K модулей в кластере Kubernetes - это сложный инструмент, и Lens IDE помогает даже новичкам легко начать работу с Kubernetes. Это один из лучших инструментов для управления и визуализации кластеров Kubernetes. 7. WKSctl WKSctl обозначает управление системой Weave Kubernetes. Является частью Wave Kubernetes Platform. WKSctl - это инструмент, использующий GitOps для управления конфигурацией Kubernetes. GitOps - это не что иное, как набор практик, которые используют запросы git для управления приложениями и инфраструктурой традиционным способом. С помощью WKSctl можно управлять кластерами Kubernetes через Git commits. Можно обновить кластер, добавлять или удалять узлы из кластера. Этот инструмент можно запускать в 2 режимах: автономном и режиме GitOps. В автономном режиме создается статический кластер. В режиме GitOps он настраивает кластер в соответствии с данными cluster.yml и machines.yml, имеющимися в git. Функции WKSctl: Быстрый запуск кластера с git Откат в случае сбоя развертывания Регистрация изменения для рассмотрения и аудита Для создания кластера требуются только IP-адрес и ключи ssh Непрерывная проверка и корректировка состояние кластера Заключение Это был краткий обзор популярных инструментов управления Kubernetes кластерами. Выберите любой из вышеупомянутых инструментов и опробуйте его на своем кластере Kubernetes!
img
DNS спуфинг (spoofing), так же известный как отравление DNS кэша (cache poisoning), вид атаки, когда DNS кэш заполняется поддельными данными, в результате чего пользователь перенаправляется на вредоносный сайт. Отравление DNS-кэша является результатом уязвимостей, которые позволяют преступникам отправлять поддельные DNS-ответы, которые серверы доменных имен (DNS - Domain Name Server) сохраняют в своих кэшах. Обычно скомпрометированная запись перенаправляет пользователя на поддельный веб-сайт, который злоумышленники используют для совершения преступных действий, таких как распространение вредоносных программ или кража реквизитов кредитных карт, паролей, финансовых данных или другой конфиденциальной и частной информации. При отравлении DNS-кэша сервер кэша DNS сохраняет нелегитимный адрес, предоставленный злоумышленником, а затем выдает его пользователям, запрашивающим подлинный веб-сайт. В большинстве случаев он может выглядеть аналогично аутентичному веб-сайту, поэтому посетителям становится сложнее отличить поддельный сайт от настоящего. Влияние отравления DNS-кэша DNS спуфинг, обычно трудно обнаружить и может оказать большое негативное влияние, особенно для популярных веб-сайтов или веб-приложений со большим количеством посещений или зарегистрированными пользователями. Это представляет большой риск, особенно в некоторых чувствительных отраслях, таких как банковская, медицинская, онлайн-ритейл, электронная коммерция и другие. Например, предполагается, что злоумышленникам удается изменить DNS-записи и IP-адреса для Amazon. Затем они направляют запрос на другой сервер с поддельным IP, который контролируют или принадлежит злоумышленникам. Любой человек, пытающийся получить доступ к подлинному сайту Amazon, будет перенаправлен на неправильный адрес, который может содержать вредоносные программы для кражи конфиденциальной информации. Кроме веб-сайтов, злоумышленник может вставить поддельный адрес для сервера электронной почты или других веб-приложений, таких как банковские приложения. Поскольку изменения в DNS регулярно распространяются с одного сервера на другой, отравленный кэш может распространяться на другие DNS-серверы и системы, что приводит к большому ущербу. Например, поддельная запись может быстро распространяться на другие машины, такие как DNS-серверы Интернет-провайдеров, которые затем будут хранить ее в своем кэше. Отсюда он распространяется дальше на оборудования пользователей, такое как браузеры, мобильные телефоны и маршрутизаторы, которые также будут хранить поддельную запись в своих кэшах. Как работает атака отравление DNS-кэша? Преступники могут отравить кэш DNS с помощью различных методик. Во время обычных операций DNS-запросы хранятся или кэшируются в базе данных, которую пользователи веб-сайтов могут запрашивать в режиме реального времени. Как правило, база данных DNS содержит список имен Интернета и соответствующих IP-адресов. И это облегчает поиск и доступ к веб-сайтам с использованием имен в отличие от IP-адресов, что может быть очень сложным и запутанным. Например, без системы DNS пользователям потребуется запомнить строку чисел, составляющих IP-адреса для всех веб-сайтов, которые они хотят посетить. К сожалению, DNS имеет несколько недостатков в безопасности, которые злоумышленники могут использовать и вставлять в систему поддельные записи адресов интернет-домена. Обычно преступники отправляют на DNS-сервер поддельные ответы. Затем сервер отвечает пользователю, сделавшему запрос, и одновременно законные серверы кэшируют поддельную запись. Как только сервер кэша DNS сохранит поддельную запись, все последующие запросы на скомпрометированную запись получат адрес сервера, управляемого злоумышленником. Отравление DNS-кэша в целом состоит из внедрения поврежденных записей в базу данных кэша сервера имен, и злоумышленники используют различные методы. К ним относятся: Когда пользователь веб-сайта или веб-приложения отправляет запрос на определенный домен через браузер или онлайн-приложение, DNS-сервер сначала проверяет, существует ли запись в кэше. Если он не сохранен, он запросит информацию у авторитетных DNS-серверов, а затем ждет ответа. В течение некоторого времени злоумышленники будут использовать этот узкий период ожидания, временно брать на себя роль исходного DNS и выдавать поддельный ответ до того, как авторитетный сервер отправит подлинный адрес. Однако, поскольку период ожидания обычно очень короткий, показатель успеха очень низкий. Другой способ включает отправку поддельных ответов от DNS-сервера, олицетворяющего легитимный. Поскольку проверка DNS обычно не выполняется, злоумышленники могут подделать ответ от DNS-распознавателя по мере запроса сервера имен. Это также становится возможным благодаря тому, что DNS-серверы используют протокол пользовательских датаграмм (UDP) вместо TCP. Обычно связь DNS небезопасна из-за незашифрованной информации в пакетах UDP и отсутствия аутентификации. Это облегчает злоумышленникам вставлять в ответы поддельные адреса. Уязвимости DNS используемые злоумышленниками Уязвимости безопасности в определенных веб-приложениях, а также отсутствие надлежащей аутентификации DNS-записей позволяют киберпреступникам легко скомпрометировать ответы DNS и остаться незамеченными. Некоторые из этих уязвимостей включают в себя: Отсутствие проверки и валидации DNS имеет первую структуру доверия, которая не требует проверки IP-адреса для подтверждения его подлинности перед отправкой ответа. Поскольку DNS-распознаватели не проверяют данные в кэше, там остается неверная запись, пока она не будет удалена вручную или не истечет срок действия TTL. Уязвимость рекурсивного DNS-сервера Когда рекурсивный запрос активен, DNS-сервер получает запрос и выполняет всю работу по поиску правильного адреса и отправке ответа пользователю. Если у него нет записи в кэше, он будет запрашивать ее у других DNS-серверов от имени клиента, пока не получит адрес и не вернет его пользователю. Включение рекурсивного запроса представляет уязвимость безопасности, которую злоумышленники могут использовать для отравления кэша DNS. Поскольку сервер ищет адрес, он предоставляет злоумышленнику возможность перехватить трафик и предоставить поддельный ответ. Затем рекурсивный DNS-сервер отправит ответ пользователю и одновременном сохранит поддельный IP-адрес в кэше. Отсутствие шифрования Как правило, протокол DNS не зашифрован, и это облегчает злоумышленникам перехват его трафика. Кроме того, серверы не должны проверять IP-адреса, на которые они направляют трафик, следовательно, они не могут определить, является ли он подлинным или поддельным. Как предотвратить DNS спуфинг? Мониторинг данных DNS в реальном времени может помочь установить наличие в трафике необычных шаблонов, действий пользователей или поведения, таких как посещение вредоносных веб-сайтов. И хотя обнаружение отравления DNS-кэшем затруднено, существует несколько мер безопасности, и компании и поставщики услуг могут принять меры, чтобы предотвратить это. Некоторые из мер, предотвращающих отравление DNS-кэша, включают использование DNSSEC, отключение рекурсивных запросов и многое другое. Предельный уровень отношений доверия Одной из уязвимостей DNS-транзакций являются отношения высокого доверия между различными DNS-серверами. Это означает, что серверы не проверяют подлинность получаемых ими записей, что позволяет злоумышленникам даже отправлять поддельные ответы со своих нелегитимных серверов. Чтобы злоумышленники не использовали этот недостаток, группы безопасности должны ограничить уровень доверительных отношений, которые имеют их DNS-серверы с другими. Настройка DNS-серверов таким образом, чтобы они не опирались на доверительные отношения с другими DNS-серверами, затрудняет использование киберпреступниками DNS-сервера для компрометации записей на законных серверах. Существует множество инструментов для проверки наличия угроз безопасности DNS. Использование протокола DNSSEC Расширения безопасности системы доменных имен (DNSSEC - Domain Name System Security Extensions) используют криптографию с открытым ключом для подписи DNS-записей, поэтому они добавляют функцию проверки и позволяют системам определять, является ли адрес законным или нет. Это помогает проверять и аутентифицировать подлинность запросов и ответов и тем самым предотвращать подделку. При обычной работе протокол DNSSEC связывает уникальную криптографическую подпись с другой информацией DNS, такой как записи CNAME и A. Затем DNS-распознаватель использует эту подпись для проверки подлинности DNS-ответа перед отправкой его пользователю. Подписи безопасности гарантируют, что ответы на запросы, которые получают пользователи, проверяются законным исходным сервером. Хотя DNSSEC может предотвратить отравление кэша DNS, он имеет такие недостатки, как сложное развертывание, предоставление данных и уязвимость перечисления зон в более ранних версиях. Не уверены, что в вашем домене включен DNSSEC? Немедленно проверьте с помощью инструмента DNSSEC Test. Используйте последние версии программного обеспечения DNS и BIND (Berkeley Internet Name Domain) BIND версии 9.5.0 или выше обычно имеет расширенные функции безопасности, такие как криптографически безопасные идентификаторы транзакций и рандомизация портов, что помогает минимизировать отравление DNS-кэша. Кроме того, ИТ-специалисты должны поддерживать программное обеспечение DNS в актуальном состоянии и гарантировать, что оно является самой последней и безопасной версией. Помимо вышеизложенного, ниже приведены другие эффективные способы или практики предотвращения отравления DNS-кэшем. Настройка DNS-сервера для ответа только информацией, относящейся к запрошенному домену Убедитесь, что на сервере кэша хранятся только данные, относящиеся к запрошенному домену Принудительно использовать сети IP для всего трафика Отключить функцию рекурсивных запросов DNS Заключение Отравление кэш-памяти DNS приводит к перенаправлению пользователей домена на вредоносные адреса. Некоторые серверы, управляемые злоумышленниками, могут обманывать ничего не подозревающих пользователей, которые загружают вредоносные программы или предоставляют пароли, информацию о кредитных картах и другие конфиденциальные личные данные. Для предотвращения этого важно использовать передовые методы обеспечения безопасности.
img
В этой статье мы рассмотрим процесс установки и настройки режима Docker Swarm на сервере Ubuntu 16.04. Docker Swarm является стандартным инструментом кластеризации для Docker, преобразующий набор хостов Docker в один последовательный кластер, называемый Swarm. Docker Swarm обеспечивает доступность и высокую производительность работы, равномерно распределяя ее по хостингам Docker внутри кластера. Установка Docker Swarm: Перед началом обновите Ваш системный репозиторий до последней версии с помощью следующей команды: sudo apt-get update -y && sudo apt-get upgrade -y После обновления следует выполнить перезагрузку системы. Необходимо еще установить среду Docker. По умолчанию Docker не доступен в репозитории Ubuntu 16.04, поэтому сначала необходимо создать хранилище Docker и начать установку с помощью следующей команды: sudo apt-get install apt-transport-https software-properties-common ca-certificates -y: Добавляем GPG ключ для Docker: wget https://download.docker.com/linux/ubuntu/gpg && sudo apt-key add gpg Добавляем репозиторий Docker и обновляем с помощью команды: sudo echo "deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable" >> /etc/apt/sources.list sudo apt-get update -y Установка среды Docker с помощью следующей команды: sudo apt-get install docker-ce -y После установки запустите службу Docker во время загрузки с помощью следующей команды: sudo systemctl start docker && sudo systemctl enable docker Для запуска Docker необходимы root права, а для других юзеров доступ получается только с помощью sudo. При необходимости запустить docker без использования sudo, есть возможность создать Unix и включить в него необходимых пользователей за счет выполнения следующих строк кода: sudo groupadd docker && sudo usermod -aG docker dockeruser Затем выйдя из системы, делаем вход через dockeruser. sudo ufw allow 2376/tcp && sudo ufw allow 7946/udp && sudo ufw allow 7946/tcp && sudo ufw allow 80/tcp && sudo ufw allow 2377/tcp && sudo ufw allow 4789/udp Затем перезагрузите брандмауэр, включив его при загрузке sudo ufw reload && sudo ufw enable Выполните перезагрузку “Докера”: sudo systemctl restart docker Создавая Docker Swarm кластер, необходимо определиться с IP-адресом, за счет которого ваш узел будет действовать в качестве диспетчера: docker swarm init --advertise-addr 192.168.0.103 Вы должны увидеть следующий вывод: Swarm initialized: current node (iwjtf6u951g7rpx6ugkty3ksa) is now a manager. To add a worker to this swarm, run the following command: docker swarm join --token SWMTKN-1-5p5f6p6tv1cmjzq9ntx3zmck9kpgt355qq0uaqoj2ple629dl4-5880qso8jio78djpx5mzbqcfu 192.168.0.103:2377 To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions. Проверяем его состояние: docker node ls Если все работает правильно, вы должны увидеть следующий вывод: ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS iwjtf6u951g7rpx6ugkty3ksa * Manager-Node Ready Active Leader Проверка статуса Docker Swarm Cluster осуществляется следующим образом: code> docker info Вывод должен быть следующим: Containers: 0 Running: 0 Paused: 0 Stopped: 0 Images: 0 Server Version: 17.09.0-ce Storage Driver: overlay2 Backing Filesystem: extfs Supports d_type: true Native Overlay Diff: true Logging Driver: json-file Cgroup Driver: cgroupfs Plugins: Volume: local Network: bridge host macvlan null overlay Log: awslogs fluentd gcplogs gelf journald json-file logentries splunk syslog Swarm: active NodeID: iwjtf6u951g7rpx6ugkty3ksa Is Manager: true ClusterID: fo24c1dvp7ent771rhrjhplnu Managers: 1 Nodes: 1 Orchestration: Task History Retention Limit: 5 Raft: Snapshot Interval: 10000 Number of Old Snapshots to Retain: 0 Heartbeat Tick: 1 Election Tick: 3 Dispatcher: Heartbeat Period: 5 seconds CA Configuration: Expiry Duration: 3 months Force Rotate: 0 Autolock Managers: false Root Rotation In Progress: false Node Address: 192.168.0.103 Manager Addresses: 192.168.0.103:2377 Runtimes: runc Default Runtime: runc Init Binary: docker-init containerd version: 06b9cb35161009dcb7123345749fef02f7cea8e0 runc version: 3f2f8b84a77f73d38244dd690525642a72156c64 init version: 949e6fa Security Options: apparmor seccomp Profile: default Kernel Version: 4.4.0-45-generic Operating System: Ubuntu 16.04.1 LTS OSType: linux Architecture: x86_64 CPUs: 1 Total Memory: 992.5MiB Name: Manager-Node ID: R5H4:JL3F:OXVI:NLNY:76MV:5FJU:XMVM:SCJG:VIL5:ISG4:YSDZ:KUV4 Docker Root Dir: /var/lib/docker Debug Mode (client): false Debug Mode (server): false Registry: https://index.docker.io/v1/ Experimental: false Insecure Registries: 127.0.0.0/8 Live Restore Enabled: false Узел теперь настроен правильно, пришло время добавить его в Swarm Cluster. Сначала скопируйте вывод команды «swarm init» из вывода результата выше, а затем вставьте этот вывод в рабочий узел для присоединения к Swarm Cluster: docker swarm join --token SWMTKN-1-5p5f6p6tv1cmjzq9ntx3zmck9kpgt355qq0uaqoj2ple629dl4-5880qso8jio78djpx5mzbqcfu 192.168.0.103:2377 Вы должны увидеть следующий вывод: This node joined a swarm as a worker. Теперь выполните следующую команду для вывода списка рабочего узла: docker node ls Вы должны увидеть информацию следующего вида: ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS iwjtf6u951g7rpx6ugkty3ksa * Manager-Node Ready Active Leader snrfyhi8pcleagnbs08g6nnmp Worker-Node Ready Active Docker Swarm Cluster запущен и работает, теперь можно запустить веб-сервис в Docker Swarm Mode. За счет следующей строки кода выполнится развертывание службы веб-сервера: docker service create --name webserver -p 80:80 httpd Приведенная выше строка создаст контейнер веб-сервера Apache и сопоставит его с 80 портом, позволив иметь полный доступ к необходимому веб-серверу Apache из удаленной системы. Теперь запускаем проверку работающего сервиса с помощью команды: docker service ls Вы должны увидеть следующий вывод: ID NAME MODE REPLICAS IMAGE PORTS nnt7i1lipo0h webserver replicated 0/1 apache:latest *:80->80/tcp Запустите службу масштабирования веб-сервера с помощью строки: docker service scale webserver = 2 А также проверьте состояние с помощью команды: docker service ps webserver Вы должны увидеть следующий вывод: ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS 7roily9zpjvq webserver.1 httpd:latest Worker-Node Running Preparing about a minute ago r7nzo325cu73 webserver.2 httpd:latest Manager-Node Running Preparing 58 seconds ago Веб-сервер Apache работает. Теперь вы можете получить доступ к веб-серверу: Служба веб-сервера Apache теперь распределена по двум узлам. Docker Swarm обеспечивает доступность вашего сервиса. Если веб-сервер отключается на рабочем узле, то новый контейнер будет запущен на узле менеджера. Для проверки доступности следует остановить службу Docker на рабочем узле: sudo systemctl stop docker Запустите службу веб-сервера с помощью команды: docker service ps webserver Вы должны увидеть следующую информацию: ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS ia2qc8a5f5n4 webserver.1 httpd:latest Manager-Node Ready Ready 1 second ago 7roily9zpjvq \_ webserver.1 httpd:latest Worker-Node Shutdown Running 15 seconds ago r7nzo325cu73 webserver.2 httpd:latest Manager-Node Running Running 23 minutes ago С помощью данной статьи, вы смогли установить и настроить кластер Docker Swarm для ОС Ubuntu 16.04. Теперь вы можете легко масштабировать свое приложение в кластере до тысячи узлов и пятидесяти тысяч контейнеров без существенной потери производительности.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59