По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Безопасность личных данных стоит почти наравне с физической безопасностью людей. Развитие Интернет технологий создало возможность мгновенного доступа ко всей информации не выходя из дома. Государственные организации создают электронный порталы, где можно получить любую информацию о себе. Финансовые организации оказывают онлайн услуги клиентам в виде интернет-банкинга. Публичные сети же сделали все это более доступным. Сидя в любом кафе можем проверить свой банковский счет, получить нужную справку в электронном формате, занять онлайн очередь в разных структурах. Но зачастую подключаясь к открытым, бесплатным беспроводным сетям мы даже не задумываемся, а на самом ли деле на том конце стоит маршрутизатор и наши данные не попадают в руки тех, кто не должен их видеть. В публичных сетях много угроз, одной из которых является атака MITM Man-in-the-Middle "Человек посередине" или атака посредника. Вкратце это такой тип атаки когда хакеры, подключившись к точке доступа, могут поместить себя в качестве посредника между двумя пользователями, у которых нет протоколов взаимной аутентификации. Как только злоумышленники полностью завладевают соединением, они могут читать и даже изменять любую передаваемую информацию. Опытные хакеры могут даже извлечь из потока данных информацию о вашей банковской карте. Последствия утраты таких данных очевидны. Такой вид атаки легче организовать в беспроводных сетях, хотя и проводные сети не застрахованы от этой атаки. Но в проводных сетях можно настроить сетевые устройства таким образом, чтобы она реагировала на смену связки IP и MAC-адреса и при обнаружении заблокировать доступ к сети подозрительному устройству. В проводных же сетях, особенно если это публичные сети, всё немного сложнее. Поэтому пользователям придется самим позаботиться о безопасности своих личных данных. Приготовиться к атаке! Чтобы не стать жертвой атаки типа MITM, нужно знать всего несколько правил безопасности. Первое правило - Firewall Во-первых, включите на своём устройстве межсетевой экран. В системе Windows это Windows Defender Firewall. Он по умолчанию включён, если у вас не установлено стороннее ПО, выполняющее ту же функцию. Проверить и включить Firewall можно на панели управления перейдя по одноимённому пункту меню и выбрав Включить/выключить Windows Defender Firewall: Это защитит ваш компьютер от вторжения злоумышленника и кражи ваших электронных данных. Также не помещает установить какой-нибудь антивирус, даже бесплатный, который способен защитить ваше устройство от заражения сетевым червем, который тоже занимается кражей данных и не только. Никакого HTTP! Во-вторых, в публичных сетях лучше избегать пользования услугами онлайн-банкинга. Но если есть сильная необходимость, то убедитесь, что ваш банк обеспечивает шифрованное соединение между вами и сервером. Проверить это легко. При шифрованном соединении в строке браузера перед адресом отображается значок замка, а перед адресом сайта отображается https://. HTTPS это защищенный протокол передачи данных в сети. Hypertext Transfer Protocol основной протокол связи в интернете. Когда пользователь вводит адрес в строке браузера, последний создает соединение с веб-сервером по этому протоколу. Позже была разработана защищенная версия данного протокола, которая отправляет данные поверх SSL или TLS. Такое соединение позволяет шифровать данные перед отправкой на сервер. Шифрование происходит на устройстве пользователя методом асимметричного шифрования с помощью публичного ключа, который сайт отправляет вам вместе с сертификатом. Посмотреть сертификат сайта и публичный ключ можно в том же браузере. В Google Chrome кликаем на значок замка и выбираем Certificate. В открывшемся окне можно увидеть всю информацию о сертификате включая срок действия и подписавшую сертификат центра сертификации. Расшифровать данные сможет только веб-сервер где имеется вторая приватная часть ключа шифрования. И даже если ваши зашифрованные данные попадут в руки злоумышленников, расшифровать их им придется долго. Правда, атака посредника имеет несколько векторов развития и при наличии необходимых навыков злоумышленник может получить доступ даже к шифрованной информации. Например, он может взломать сервера центра сертификации и заполучить все ключи, которые выданы клиентам. Но это уже больше забота самих центров сертификации. Некоторые сайты имеют две версии, защищенную и обычную через http-протокол. Чтобы всегда пользоваться только защищенным соединением, можете устанавливать специальные расширения для браузеров. Шифрование через VPN В-третьих, при подключении к публичным сетям рекомендуется пользоваться VPN сервисами. VPN сервисы создают защищенный туннель между вами и серверами поставщика VPN услуг. Все данные в таком туннеле тоже шифруются надежными алгоритмами шифрования. Услуги VPN предоставляют даже некоторые браузеры, например Opera или Яндекс.Браузер. Так же есть специальные расширения для браузеров и настольные приложения. Правда, при работе через VPN скорость ощутимо падает, но безопасность данных того стоит. Кстати, о том, что такое VPN и как он обходит блокировки можно почитать в нашей статье Ну а напоследок, просто быть повнимательнее. Не нужно подключаться к первой попавшейся беспроводной сети с подозрительным названием. Если вы сидите в кафе, то название точки доступа обычно совпадает с названием объекта. Правда, подмену SSID никто не отменял, но для этого нужно вырубить роутер, безопасность которого забота сотрудников ИТ отдела данного объекта. Безопасного интернет-серфинга!
img
Друг, наша предыдущая статья была посвящена рассказу о том, что из себя представляет протокол DHCP (Dynamic Host Configuration Protocol). Сегодня мы расскажем, как его настроить на оборудовании Cisco. Маршрутизатор Cisco, работающий под управлением программного обеспечения Cisco IOS, может быть настроен на работу в качестве DHCP сервера. Сервер назначает и управляет адресами IPv4 из указанных пулов адресов в маршрутизаторе для DHCP клиентов. Исключение адресов IPv4 Маршрутизатор, работающий как DHCP сервер, назначает все адреса IPv4 в диапазоне (пуле), если не настроен на исключение определенных адресов. Как правило, некоторые IP адреса из пула принадлежат сетевым устройствам, таким как маршрутизаторы, сервера или принтеры, которым требуются статические адреса, поэтому эти адреса не должны назначаться другим устройствам. Чтобы их исключить, используется команда ip dhcp excluded-address. При помощи этой команды можно исключить как один единственный адрес, так и диапазон адресов, указав из него первый и последний. Рассмотрим на примере, в котором исключим из раздачи адрес 192.168.1.254 и адреса с 192.168.1.1 по 192.168.1.9 Router(config)# ip dhcp excluded-address 192.168.1.254 Router(config)# ip dhcp excluded-address 192.168.1.1 192.168.1.9 Настройка DHCP пула Настройка DHCP сервера включает в себя определение пула адресов, которые будут раздаваться. Для создания пула используется команда ip dhcp pool [название_пула]. После этого необходимо ввести две обязательные команды – network [адрес_сети][маска/длина_префикса] для указания сети из которой будут раздаваться адреса и default-router[адрес_default_gateway] для указания шлюза по умолчанию (можно ввести до 8 адресов). Также можно использовать дополнительные команды – например, указать DNS сервер (команда dns-server [адрес]), доменное имя (команда domain-name [домен]), NetBIOS WINS сервер (команда netbios-name-server[адрес]), а так же время аренды адреса (команда lease [количество_дней_часов_минут], сначала указываются дни, затем через пробел часы, а затем минуты). По умолчанию время аренды выставляется 1 день. Router(config)# ip dhcp pool POOL-1 Router(dhcp-config)# network 192.168.1.0 255.255.255.0 Router(dhcp-config)# default-router 192.168.1.1 Router(dhcp-config)# dns-server 192.168.1.2 Router(dhcp-config)# domain-name merionet.ru Router(dhcp-config)# lease 2 Чтобы выполнить проверку можно использовать команду show ip dhcp binding, которая показывает список всех IP адресов и сопоставленных с ними MAC адресов, которые были выданы DHCP сервером. Также есть команда show ip dhcp server statistics, используя которую можно увидеть статистику DHCP сервера, включая информацию об отправленных и полученных DHCP сообщениях. Ну и если клиентом является ПК с ОС Windows, то информацию можно посмотреть через командную строку, введя команду ipconfig /all, а для пользователей Linux подойдет команда ifconfig. Ретрансляция DHCP (DHCP Relay) В сложной иерархической сети серверы обычно находятся не в той же сети, что и клиенты. В результате если DHCP сервер находится в другой сети, то до него не смогут доходить запросы от клиентов, поскольку маршрутизаторы не пересылают широковещательные сообщения. Чтобы решить эту проблему нужно воспользоваться командной ip helper-address [адрес_DHCP-сервера], которую нужно ввести на маршрутизаторе в режиме конфигурации интерфейса, чтобы он перенаправлял broadcast сообщения от DHCP клиентов уже в виде unicast к DHCP серверу, находящемуся в другой сети. Router_2(config)# interface g0/0 Router_2(config-if)# ip helper-address 192.168.1.1 Настройка роутера как DHCP клиента Иногда роутер сам должен получить IP адрес по DHCP, например от интернет-провайдера. Для этого нужно в режиме конфигурации интерфейса ввести команду ip address dhcp, после чего интерфейс будет пытаться получить адрес от DHCP сервера. Router_3(config)# interface g0/0 Router_3(config-if)# ip address dhcp
img
Почитать лекцию №19 про Connection-oriented protocols и Connectionless протоколы можно тут. Протоколы передачи данных часто бывают многоуровневыми, причем нижние уровни предоставляют услуги по одному переходу, средний набор уровней предоставляет услуги от конца до конца между двумя устройствами и, возможно, набор уровней предоставляет услуги от конца до конца между двумя приложениями или двумя экземплярами одного приложения. Рисунок 1 иллюстрирует это. Каждый набор протоколов показан как пара протоколов, потому что, как показано в модели рекурсивной архитектуры Интернета (RINA), рассмотренной в предыдущих лекциях, транспортные протоколы обычно входят в пары, причем каждый протокол в паре выполняет определенные функции. В этой серии лекций будут рассмотрены физические протоколы и протоколы передачи данных, как показано на рисунке 1. В частности, в этой лекции будут рассмотрены два широко используемых протокола для передачи данных "точка-точка" в сетях: Ethernet и WiFi (802.11). Ethernet Многие из ранних механизмов, разработанных для того, чтобы позволить нескольким компьютерам совместно использовать один провод, были основаны на проектах, заимствованных из более ориентированных на телефонные технологии. Как правило, они фокусировались на передаче токенов и других более детерминированных схемах для обеспечения того, чтобы два устройства не пытались использовать одну общую электрическую среду одновременно. Ethernet, изобретенный в начале 1970-х Bob Metcalf (который в то время работал в Xerox), разрешал перекрывающиеся разговоры другим способом-с помощью очень простого набора правил для предотвращения большинства перекрывающихся передач, а затем разрешал любые перекрывающиеся передачи путем обнаружения и обратного отсчета. Первоначальное внимание любого протокола, который взаимодействует с физической средой, будет сосредоточено на мультиплексировании, поскольку до решения этой первой проблемы можно решить лишь несколько других проблем. Поэтому эта лекция будет начинаться с описания мультиплексирующих компонентов Ethernet, а затем рассмотрены другие аспекты работы. Мультиплексирование Чтобы понять проблему мультиплексирования, с которой столкнулся Ethernet, когда он был впервые изобретен, рассмотрим следующую проблему: в сети с общим носителем вся общая среда представляет собой единую электрическую цепь (или провод). Когда один хост передает пакет, каждый другой хост в сети получает сигнал. Это очень похоже на беседу, проводимую на открытом воздухе- звук, передаваемый через общую среду (воздух), слышен каждому слушателю. Нет никакого физического способа ограничить набор слушателей во время процесса передачи. CSMA/CD В результате система, получившая название множественного доступа с контролем несущей и обнаружением коллизий (CSMA/CD), работает с использованием набора шагов: Хост слушает среду, чтобы увидеть, есть ли какие-либо существующие передачи; это часть процесса со стороны оператора связи. Узнав, что другой передачи нет, хост начнет сериализацию (передача битов сериями) битов кадра в сеть. Эта часть проста - просто слушать перед передачей. Конечно, передачи двух (или более) хостов могут конфликтовать, как показано на рисунке 2. На рисунке 2: В момент времени 1 (T1) A начинает передачу кадра на совместно используемый носитель. Для прохождения сигнала от одного конца провода к другому требуется некоторое время - это называется задержкой распространения. В момент времени 2 (T2) C прослушивает сигнал на проводе и, не обнаружив его, начинает передачу кадра на совместно используемый носитель. В этот момент уже произошла коллизия, поскольку оба A и C передают кадр в один и тот же момент, но ни один из них еще не обнаружил коллизию. В момент времени 3 (T3) два сигнала фактически сталкиваются в проводе, в результате чего они оба деформируются и, следовательно, не читаются. Столкновение можно обнаружить в точке А в тот момент, когда сигнал от С достигает точки А, прослушав свой собственный сигнал, передаваемый по проводу. Когда сигнал от С достигнет А, А получит искаженный сигнал, вызванный комбинацией этих двух сигналов (результат столкновения). Это часть обнаружением столкновений (участок СD) работы локальные сети CSMA/CD. Что должен сделать хост при обнаружении столкновения? В оригинальном конструкции Ethernet хост будет посылать сигнал блокировки достаточно долго, чтобы заставить любой другой хост, подключенный к проводу, обнаружить конфликт и прекратить передачу. Длина сигнала блокировки изначально была установлена таким образом, чтобы сигнал блокировки потреблял, по крайней мере, время, необходимое для передачи кадра максимального размера по проводу по всей длине провода. Почему именно столько времени? Если при определении времени передачи сигнала помехи использовался более короткий, чем максимальный кадр, то хост со старыми интерфейсами (которые не могут посылать и принимать одновременно) может фактически пропустить весь сигнал помехи при передаче одного большого кадра, что делает сигнал помехи неэффективным. Важно дать хозяевам, подключенным на самом конце проводов, достаточно времени, чтобы получить сигнал помехи, чтобы они почувствовали столкновение и предприняли следующие шаги. Как только сигнал помехи получен, каждый хост, подключенный к проводу, установит таймер обратного отсчета, так что каждый из них будет ждать некоторое случайное количество времени, прежде чем пытаться передать снова. Поскольку эти таймеры установлены на случайное число, когда два хоста с кадрами, ожидающими передачи, пытаются выполнить свою следующую передачу, столкновение не должно повториться. Если каждый хост, подключенный к одному проводу, получает один и тот же сигнал примерно в одно и то же время (учитывая задержку распространения по проводу), как любой конкретный хост может знать, должен ли он на самом деле получать определенный кадр (или, скорее, копировать информацию внутри кадра из провода в локальную память)? Это работа Media Access Control (MAC). Каждому физическому интерфейсу назначается (как минимум) один MAC-адрес. Каждый кадр Ethernet содержит MAC-адрес источника и назначения; кадр форматируется таким образом, что MAC-адрес назначения принимается раньше любых данных. После того, как весь MAC-адрес назначения получен, хост может решить, следует ли ему продолжать прием пакета или нет. Если адрес назначения совпадает с адресом интерфейса, хост продолжает копировать информацию с провода в память. Если адрес назначения не совпадает с адресом локального интерфейса, хост просто прекращает прием пакета. А как насчет дубликатов MAC-адресов? Если несколько хостов, подключенных к одному и тому же носителю, имеют один и тот же физический адрес, каждый из них будет получать и потенциально обрабатывать одни и те же кадры. Существуют способы обнаружения повторяющихся MAC-адресов, но они реализуются как часть межслойного обнаружения, а не самого Ethernet; MAC-адреса будут правильно назначены системным администратором, если они назначены вручную. MAC-адреса назначаются производителем устройства, поэтому дублирование MAC-адресов исключено, независимо от того, сколько хостов подключено друг к другу. (Поскольку MAC-адреса обычно перезаписываются на каждом маршрутизаторе, они должны быть уникальными только в сегменте или широковещательном домене. В то время как многие старые системы стремились обеспечить уникальность каждого сегмента или широковещательного домена, это обычно должно быть обеспечено с помощью ручной конфигурации, и поэтому в значительной степени было отказано в пользу попытки предоставить каждому устройству глобальный уникальный MAC-адрес, "вшитый" в чипсете Ethernet при создании.) Первое решение трудно реализовать в большинстве крупномасштабных сетей- ручная настройка MAC-адресов крайне редка в реальном мире вплоть до ее отсутствия. Второй вариант, по существу, означает, что MAC-адреса должны быть назначены отдельным устройствам, чтобы ни одно из двух устройств в мире не имело одного и того же MAC-адреса. Как такое возможно? Путем назначения MAC-адресов из центрального хранилища, управляемого через организацию стандартов. Рисунок 3 иллюстрирует это. Рис. 3 Формат адреса MAC-48/EUI-48 MAC-адрес разбит на две части: уникальный идентификатор организации (OUI) и идентификатор сетевого интерфейса. Идентификатор сетевомого интерфейса присваивается заводом-изготовителем микросхем для Ethernet. Компаниям, производящим чипсеты Ethernet, в свою очередь, присваиваются уникальный идентификатор организации Институтом инженеров электротехники и электроники (Institute of Electrical and Electronic Engineers -IEEE). До тех пор, пока организация (или производитель) назначает адреса чипсету с его OUI в первых трех октетах MAC-адреса и не назначает никаким двум устройствам один и тот же идентификатор сетевого интерфейса в последних трех октетах MAC-адреса, никакие два MAC-адреса не должны быть одинаковыми для любого набора микросхем Ethernet. Два бита в пространстве OUI выделяются, чтобы сигнализировать, был ли MAC-адрес назначен локально (что означает, что назначенный производителем MAC-адрес был переопределен конфигурацией устройства), и предназначен ли MAC-адрес в качестве одного из следующих: Unicast адрес, означает, что он описывает один интерфейс Multicast-адрес, означает, что он описывает группу получателей MAC-адрес состоит из 48 бит- при удалении двух битов пространство MAC-адресов составляет 46 бит, что означает, что оно может описывать 246-или 70,368,744,177,664- адресуемых интерфейсов. Поскольку этого (потенциально) недостаточно, чтобы учесть быстрое количество новых адресуемых устройств, таких как Bluetooth-гарнитуры и датчики, длина MAC-адреса была увеличена до 64 бит для создания MAC-адреса EUI-64, который построен таким же образом, как и более короткий 48-битный MAC-адрес. Эти адреса могут поддерживать 262-или 4,611,686,018,427,387,904-адресуемые интерфейсы. Конец эпохи CSMA / CD Модель развертывания Ethernet с разделяемой средой в значительной степени (хотя и не полностью!) заменена в большинстве сетей. Вместо общей среды большинство развертываний Ethernet теперь коммутируются, что означает, что одна электрическая цепь или один провод разбивается на несколько цепей путем подключения каждого устройства к порту на коммутаторе. Рисунок 4 демонстрирует это. На рисунке 4 каждое устройство подключено к разному набору проводов, каждый из которых оканчивается одним коммутатором. Если сетевые интерфейсы на трех хостах (A, B и C) и сетевые интерфейсы коммутатора могут отправлять или получать в любой момент времени вместо того, чтобы делать и то, и другое, A может отправлять, пока коммутатор тоже отправляет. В этом случае процесс CSMA / CD все равно должен соблюдаться для предотвращения коллизий, даже в сетях, где только два передатчика подключены к одному проводу. Такой режим работы называется полудуплексом. Однако, если наборы микросхем Ethernet могут одновременно прослушивать и передавать данные для обнаружения коллизий, эту ситуацию можно изменить. Самый простой способ справиться с этим - разместить сигналы приема и передачи на разных физических проводах в наборе проводов, используемых в кабеле Ethernet. Использование разных проводов означает, что передачи от двух подключенных систем не могут конфликтовать, поэтому набор микросхем может передавать и принимать одновременно. Чтобы включить этот режим работы, называемый полнодуплексным, витая пара Ethernet передает сигнал в одном направлении по одной паре проводов, а сигнал в противоположном направлении - по другому набору проводов. В этом случае CSMA / CD больше не нужен (коммутатор должен узнать, какое устройство (хост) подключено к каждому порту, чтобы эта схема работала). Контроль ошибок CSMA/CD предназначен для предотвращения одного вида обнаруживаемой ошибки в Ethernet: когда коллизии приводят к искажению кадра. Однако в сигнал могут входить и другие виды ошибок, как и в любой другой электрической или оптической системе. Например, в кабельной системе с витой парой, если скрученные провода слишком сильно "разматываются" при установке коннектора, один провод может передавать свой сигнал другому проводу через магнитные поля, вызывая перекрестные помехи. Когда сигнал проходит по проводу, он может достигать другого конца провода и отражаться обратно по всей длине провода. Как Ethernet контролирует эти ошибки? Оригинальный стандарт Ethernet включал в себя 32-битную циклическую проверку избыточности (Cyclic Redundancy Check-CRC) в каждом кадре, которая позволяет обнаруживать большой массив ошибок при передаче. Однако на более высоких скоростях и на оптических (а не электрических) транспортных механизмах CRC не обнаруживает достаточно ошибок, чтобы повлиять на работу протокола. Чтобы обеспечить лучший контроль ошибок, более поздние (и более быстрые) стандарты Ethernet включили более надежные механизмы контроля ошибок. Например, Gigabit Ethernet определяет схему кодирования 8B10B, предназначенную для обеспечения правильной синхронизации часов отправителя и получателя; эта схема также обнаруживает некоторые битовые ошибки. Ten-Gigabit Ethernet часто реализуется аппаратно с помощью Reed-Solomon code Error Correction (EC) и системы кодирования 16B18B, которая обеспечивает прямое исправление ошибок (FEC) и синхронизацию часов с 18% -ными издержками. Схема кодирования 8B10B пытается обеспечить наличие примерно одинакового количества битов 0 и 1 в потоке данных, что позволяет эффективно использовать лазер и обеспечивает встроенную в сигнал тактовую синхронизацию. Схема работает путем кодирования 8 бит данных (8B) в 10 передаваемых битов по проводу (10B), что означает около 25% накладных расходов на каждый передаваемый символ. Ошибки четности одного бита могут быть обнаружены и исправлены, потому что приемник знает, сколько "0" и "1" должно быть получено. Маршалинг данных Ethernet передает данные пакетами и кадрами: пакет состоит из преамбулы, кадра и любой конечной информации. Фрейм содержит заголовок, который состоит из полей фиксированной длины и переносимых данных. На рисунке 5 показан пакет Ethernet. На рисунке 5 преамбула содержит маркер начала кадра, информацию, которую приемник может использовать для синхронизации своих часов для синхронизации с входящим пакетом, и другую информацию. Адрес назначения записывается сразу после преамбулы, поэтому получатель может быстро решить, копировать этот пакет в память или нет. Адреса, тип протокола и передаваемые данные являются частью кадра. Наконец, любая информация FEC и другие трейлеры добавляются в кадр, чтобы составить последний раздел (ы) пакета. Поле type представляет особый интерес, поскольку оно предоставляет информацию для следующего уровня-протокола, предоставляющего информацию, переносимую в поле data - для идентификации протокола. Эта информация непрозрачна для Ethernet-чипсет Ethernet не знает, как интерпретировать эту информацию (только где она находится) и как ее переносить. Без этого поля не было бы последовательного способа для передачи переносимых данных в правильный протокол верхнего уровня, или, скорее, для правильного мультиплексирования нескольких протоколов верхнего уровня в кадры Ethernet, а затем правильного демультиплексирования. Управление потоком В исходной CSMA / CD реализации Ethernet сама совместно используемая среда предоставляла своего рода базовый механизм управления потоком. Предполагая, что никакие два хоста не могут передавать одновременно, и информация, передаваемая по какому-то протоколу верхнего уровня, должна быть подтверждена или отвечена, по крайней мере, время от времени, передатчик должен периодически делать перерыв, чтобы получить любое подтверждение или ответ. Иногда возникают ситуации, когда эта довольно грубая форма регулирования потока не работает- спецификация Ethernet предполагает, что некоторый протокол более высокого уровня будет контролировать поток информации, чтобы предотвратить сбои в этом случае. В коммутируемом полнодуплексном Ethernet нет CSMA/CD, так как нет общей среды. Два хоста, подключенные к паре каналов передачи, могут отправлять данные так быстро, как позволяют каналы связи. Фактически это может привести к ситуации, когда хост получает больше данных, чем может обработать. Чтобы решить эту проблему, для Ethernet был разработан фрейм паузы. Когда получатель отправляет фрейм паузы, отправитель должен прекратить отправку трафика в течение определенного периода времени. Фреймы паузы массово не применяются. Важно Многие протоколы не содержат все четыре функции, описанных как часть модели рекурсивной архитектуры Интернета (RINA): контроль ошибок, управление потоком, транспортировка и мультиплексирование. Даже среди тех протоколов, которые реализуют все четыре функции, все четыре не всегда используются. Обычно в этой ситуации разработчик протокола и/или сети передает функцию на более низкий или более высокий уровень в стеке. В некоторых случаях это работает, но вы всегда должны быть осторожны, предполагая, что это будет работать без ошибок. Например, существует разница между hop-by-hop шифрованием и end-to-end шифрованием. End-to-end передача хороша для приложений и протоколов, которые выполняют шифрование, но на самом деле не каждое приложение шифрует передаваемые данные. В этих случаях hop-by-hop шифрование может быть полезно для менее безопасных соединений, таких как беспроводные соединения.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59