По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Windows File Recovery - это официальный инструмент для восстановления удаленных файлов с жестких дисков, SD-карт, USB-накопителей и других носителей. Это подробное пошаговое руководство по использованию этой утилиты командной строки. Про Windows File Recovery Средство восстановления файлов Microsoft Windows не имеет графического интерфейса - это всего лишь утилита командной строки. Мы покажем вам, как его использовать, но это более сложный процесс, чем вы могли бы ожидать от официальной утилиты Microsoft, доступной в Магазине Windows 10. Для этого инструмента требуется установленное майское обновление 2020 года для Windows 10 или более новая версия Windows 10. Он не работает в старых версиях Windows. Может ли инструмент Microsoft действительно найти и восстановить удаленный файл, зависит от диска? Удаленные файлы не удаляются сразу с жестких дисков, но часто они сразу удаляются с твердотельных дисков. Если вы удалили много данных на устройстве, таком как SD-карта, то после удаления файла, вероятно, данные файла могли быть перезаписаны. Даже если вам удастся восстановить файл, вы можете получить только некоторые данные файла - файл может быть поврежден. Вы можете получить только те данные, которые еще находятся на диске. Здесь нет никаких гарантий, и поэтому резервные копии так важны. Утилита также имеет несколько режимов, предназначенных для разных ситуаций и файловых систем. Мы как их использовать. Как установить Windows File Recovery Для начала установите Windows File Recovery из Магазина Microsoft, чтобы начать. Вы можете открыть Магазин и выполнить поиск «Windows File Recovery» или просто щелкнуть эту ссылку, чтобы открыть Магазин. После установки откройте меню «Пуск» и выполните поиск и запустите ярлык Windows File Recovery один раз и нажмите «Да» для запроса UAC. Вы увидите окно командной строки с доступом администратора. Здесь вы будете запускать команды восстановления файлов. Вы можете использовать другие среды командной строки, такие как Windows Terminal и PowerShell, но не забудьте запустить их с правами администратора. (В меню «Пуск» щелкните правой кнопкой мыши тот файл, который хотите использовать, и выберите «Запуск от имени администратора».) Как восстановить удаленные файлы в Windows 10 Чтобы использовать этот инструмент, вы запустите команду winfr, указав диск, на котором вы хотите найти удаленный файл, место назначения, куда вы хотите сохранить его, и различные ключи, которые управляют тем, что инструмент ищет и как он ищет. Вы должны сохранить удаленный файл на другой диск. Вот формат команды: winfr source-drive: destination-drive: /switches После выполнения команды инструмент автоматически создаст каталог с именем Recovery_ [дата и время] на указанном целевом диске. Какой режим использовать? Прежде чем продолжить, вы должны определить режим, в котором вы хотите выполнить поиск удаленного файла. Существует три режима: Default, Segment и Signature. Default это самый быстрый режим, Segment похож на него, но медленнее и тщательнее. Режим Signature может искать файлы по типу - он поддерживает файлы ASF, JPEG, MP3, MPEG, PDF, PNG и ZIP. (При поиске файлов «ZIP» также будут найдены документы Office, хранящиеся в таких форматах, как DOCX, XLSX и PPTX.) Вам нужно знать, в какой файловой системе отсканирован диск, который вы будете сканировать. Чтобы найти это, откройте проводник, щелкните правой кнопкой мыши диск в разделе «Этот компьютер» и выберите «Свойства». Вы увидите файловую систему, отображаемую на вкладке «Общие». Вот когда вы должны использовать разные режимы: Вы пытаетесь найти файл, который вы недавно удалили, на диске, отформатированном в NTFS, которая является файловой системой Windows 10 по умолчанию? Используйте режим Default. Если вы сканируете диск NTFS в другой ситуации - например, если вы удалили файл некоторое время назад, отформатировали диск или имеете дело с поврежденным диском - сначала попробуйте режим Segment, а затем - режим Signature. Вы пытаетесь найти файл, сохраненный на диске FAT, exFAT или ReFS? Используйте режим Signature. Режимы Default и Segment работают только в файловых системах NTFS. Если у вас есть сомнения, просто начните с режима Default. Затем вы можете попробовать Segment, а затем Signature, если режим по умолчанию не работает. Как восстановить файл в режиме Default Чтобы использовать режим Default, нужно написать /n, а затем путь поиска: Для поиска файла с именем document.docx вы должны использовать /n document.docx. Вы также можете указать полный путь к файлу, например /n UsersAlexDocuments document.docx Чтобы найти все файлы, которые были в папке «Документы», если ваше имя пользователя - Alex, вы должны использовать /n UsersAlexDocuments. Для поиска с wildcard используйте звездочку *. Например, /n UsersAlexDocuments*.docx найдет все файлы DOCX, которые были в папке «Документы». Давайте соединим все это сейчас в примере. Чтобы найти все файлы DOCX на диске C: и скопировать их на диск D:, вы должны выполнить следующую команду: winfr C: D: /n *.docx Вам нужно будет набрать y, чтобы продолжить. Как мы упоминали выше, вы найдете восстановленные файлы в каталоге с именем Recovery_ [дата и время] на целевом диске, который вы указали в командной строке. Чтобы найти все файлы со определенным словом в названии, используйте wildcard. Итак, чтобы найти все документы со словом «project» в любом месте в их имени, вы должны выполнить: winfr C: D: /n *project* Вы можете указать несколько поисков за раз с помощью нескольких ключей /n. Итак, чтобы найти все файлы Word, Excel и PowerPoint, вы должны выполнить следующее: winfr C: D: /n *.docx /n *.xlsx /n *.pptx Чтобы найти определенный файл с именем important_document.pdf, находящийся в папке UsersAlexDocuments на диске C:, а затем сохранить его на диске D: вы должны использовать: winfr C: D: /n UsersAlexDocumentsimportant_document.pdf Как восстановить файл в режиме Segment Режим Segment работает почти так же, как режим Default. Чтобы использовать режим Segment, который проверяет сегменты записи файла, нужно использовать /r в дополнение к /n. Другими словами, вы можете создавать команды восстановления в режиме Segment так же, как вы строите команды режима Default - просто добавьте /r. Например, чтобы восстановить все удаленные файлы MP3 с вашего диска C: и сохранить их на диске D: вы должны выполнить: winfr C: D: /r /n *.mp3 Поэтому, если поиск в режиме Default не находит того, что вы ищете, добавьте /r и попробуйте снова. Как восстановить файл в режиме Signature Режим Signature работает немного по-другому. Он проверяет типы файлов, поэтому он может найти только удаленные файлы определенных типов файлов. Чтобы использовать режим Signature, вам нужно использовать /x, чтобы указать режим Signature, и /y: чтобы указать список групп типов файлов, которые вы хотите найти. Вот список поддерживаемых типов файлов и групп, в которые они отсортированы, взяты из документации Microsoft: ASF: wma, wmv, asf JPEG: jpg, jpeg, jpe, jif, jfif, jfi MP3: mp3 MPEG: mpeg, mp4, mpg, m4a, m4v, m4b, m4r, mov, 3gp, qt PDF: pdf PNG: png ZIP: zip, docx, xlsx, pptx, odt, ods, odp, odg, odi, odf, odc, odm, ott, otg, otp, ots, otc, oti, otf, oth Обратите внимание, что группа «ZIP» включает ZIP-файлы в дополнение к документам Microsoft Office и OpenDocument. Вы можете открыть этот список в любое время, выполнив следующую команду: winfr /# Допустим, вы хотите найти на диске E: изображения в формате JPEG и сохранить их на диске D:. Вам нужно запустить следующую команду: winfr E: D: /x /y:JPEG Вы можете указать несколько групп файлов, разделяя их запятой. Итак, если вы хотите найти файлы JPEG, PDF и Word, вы должны выполнить: winfr E: D: /x /y:JPEG,PDF,ZIP Больше помощи с winfr Более подробная информация доступна на официальной странице документации Microsoft winfr. На этой странице вы также найдете подробный список всех параметров командной строки winfr. Для того чтобы изучить основы, просто запустите winfr или winfr /?. Есть также дополнительные параметры, которые вы можете увидеть, запустив winfr /!.
img
Во всем мире умные города являются неотъемлемой частью устойчивого развитие общества. Основные концепции системы "Умный город": Контроль дорожного движения; Управление муниципальным транспортом; Управление общественным транспортом; Управление парковками. Умные города гарантируют, что их граждане доберутся от точки "А" до точки "Б" максимально безопасно и эффективно. Для достижения этой цели муниципалитеты обращаются к разработке IoT (Internet of Things) и внедрению интеллектуальных транспортных решений. Интеллектуальные дорожные решения используют различные типы датчиков, а также извлекают данные GPS из смартфонов водителей для определения количества, местоположения и скорости транспортных средств. В то же время интеллектуальные светофоры, подключенные к облачной платформе управления, позволяют отслеживать время работы "зеленого света" и автоматически изменять огни в зависимости от текущей дорожной ситуации для предотвращения заторов на дороге. Примеры концепций системы "Умного города": Смарт-паркинг С помощью GPS-данных система автоматически определяет, заняты ли места для парковки или доступны, и создают карту парковки в режиме реального времени. Когда ближайшее парковочное место становится бесплатным, водители получают уведомление и используют карту на своем телефоне, чтобы найти место для парковки быстрее и проще, а не заниматься поиском парковочного места вслепую. Служебные программы Умные города позволяют гражданам экономить деньги, предоставляя им больше контроля над своими домашними коммунальными услугами. IoT обеспечивает различные подходы к использованию интеллектуальных утилит: Смарт-счетчики и выставление счетов; Выявление моделей потребления; Удаленный мониторинг. Искусственный интеллект Искусственный интеллект становится ведущим драйвером в цифровой трансформации экономики и социальной жизни. Социальная организация производства и предоставления услуг меняются. Рутинные операции выполняются роботами. Решения принимаются на основе искусственного интеллекта. С помощью него можно предотвратить управленческие ошибки и облегчить принятие решений во всех сферах городского хозяйства и управления. Преобладание цифровых документов над бумажными Реализация этой концепции позволяет городу в полной мере использовать все преимущества цифровых технологий: Оказание государственных услуг более прозрачное; Оптимизация административных процедур; Наиболее эффективное использование ресурсов. Промышленность Реализация проектов по комплексному онлайн-мониторингу промышленных объектов. Благодаря данной системе, можно контролировать состояние системы, управлять ей, а также получать статистику. Транспорт Данные от датчиков IoT могут помочь выявить закономерности того, как граждане используют транспорт. Чтобы провести более сложный анализ, интеллектуальные решения для общественного транспорта могут объединить несколько источников, таких как продажа билетов и информация о движении. Благодаря реализации данного направления можно осуществлять мониторинг транспортной инфраструктуры и мониторинг транспортных средств. Современные решения способны существенно повысить эффективность грузоперевозок, а также оптимизировать работу железнодорожных путей и дорожного покрытия, следя за температурой и влажностью. Известные уязвимости представленных систем В настоящее время происходит рост технологических возможностей, а также рост разнообразия различных электронных устройств и оборудования, используемых в автоматизированных системах управления, всё это ведет к повышению количества уязвимостей к данным системам. В добавок ко всему, процесс введения в эксплуатацию различных решений не дает стопроцентной гарантии того, что не будут допущены различные ошибки в глобальном проектировании. Это создает вероятность появления дополнительных архитектурных уязвимостей. Злоумышленники могут воспользоваться известными проблемами с безопасностью компонентов жизнеобеспечения в системах автоматизации и предпринять попытку реализации атаки. Такие действия злоумышленников могут прервать нормальную работу такого масштабного объекта, как, например, аэропорт, повлечь за собой вывод из нормальной работы системы жизнеобеспечения, блокируя систему безопасности. И, будучи незамеченными вовремя, способны привести к непоправимым последствиям. Большинство систем не защищено от попыток внедрения. Обычно все решения в области защиты систем реализуются на уровне межсетевого экрана. Но в случае с попытками атаки на столь критичные системы этого оказывается недостаточно. Роль информационной безопасности для экосистем Информационная безопасность связана с внедрением защитных мер от реализации угрозы несанкционированного доступа, что является частью управления информационными рисками и включает предотвращение или уменьшение вероятности несанкционированного доступа. Основной задачей информационной безопасности является защита конфиденциальности, целостности и доступности информации, поддержание продуктивности организации часто является важным фактором. Это привело к тому, что отрасль информационной безопасности предложила рекомендации, политики информационной безопасности и отраслевые стандарты в отношении паролей, антивирусного программного обеспечения, брандмауэров, программного обеспечения для шифрования, юридической ответственности и обеспечения безопасности, чтобы поделиться передовым опытом. Информационная безопасность достигается через структурированный процесс управления рисками, который: Определяет информацию, связанные активы и угрозы, уязвимости и последствия несанкционированного доступа; Оценивает риски; Принимает решения о том, как решать или рассматривать риски, т. е. избегать, смягчать, делиться или принимать; Отслеживает действия и вносит коррективы для решения любых новых проблем, изменений или улучшений. Типы протоколов для системы управления "Умным городом" Протоколы и стандарты связи при организации Интернета вещей можно в широком смысле разделить на две отдельные категории. Сетевые Протоколы Интернета Вещей Сетевые протоколы Интернета вещей используются для подключения устройств по сети. Это набор коммуникационных протоколов, обычно используемых через Интернет. При использовании сетевых протоколов Интернета вещей допускается сквозная передача данных в пределах сети. Рассмотрим различные сетевые протоколы: NBIoT (Narrowband Internet of Things) Узкополосный IoT или NB-IoT это стандарт беспроводной связи для Интернета вещей (IoT). NB-IoT относится к категории сетевых стандартов и протоколов маломощных глобальных сетей (LPWAN low power wide area network), позволяющих подключать устройства, которым требуются небольшие объемы данных, низкая пропускная способность и длительное время автономной работы. LoRaWan (Long Range Wide Area Network) глобальная сеть дальнего радиуса действия Это протокол для работы устройств дальнего действия с низким энергопотреблением, который обеспечивает обнаружение сигнала ниже уровня шума. LoRaWan подключает аккумуляторные устройства по беспроводной сети к интернету, как в частных, так и в глобальных сетях. Этот коммуникационный протокол в основном используется умными городами, где есть миллионы устройств, которые функционируют с малой вычислительной мощностью. Интеллектуальное уличное освещение это практический пример использования протокола LoRaWan IoT. Уличные фонари могут быть подключены к шлюзу LoRa с помощью этого протокола. Шлюз, в свою очередь, подключается к облачному приложению, которое автоматически управляет интенсивностью лампочек на основе окружающего освещения, что помогает снизить потребление энергии в дневное время. Bluetooth Bluetooth один из наиболее широко используемых протоколов для связи на короткие расстояния. Это стандартный протокол IoT для беспроводной передачи данных. Этот протокол связи является безопасным и идеально подходит для передачи данных на короткие расстояния, малой мощности, низкой стоимости и беспроводной связи между электронными устройствами. BLE (Bluetooth Low Energy) это низкоэнергетическая версия протокола Bluetooth, которая снижает энергопотребление и играет важную роль в подключении устройств Интернета вещей. ZigBee ZigBee это протокол Интернета вещей, что позволяет смарт-объекты, чтобы работать вместе. Он широко используется в домашней автоматизации. Более известный для промышленных установок, ZigBee используется с приложениями, которые поддерживают низкоскоростную передачу данных на короткие расстояния. Уличное освещение и электрические счетчики в городских районах, которые обеспечивают низкое энергопотребление, используют коммуникационный протокол ZigBee. Он также используется с системами безопасности и в умных домах и городах. Протоколы передачи данных Интернета Вещей Протоколы передачи данных IoT используются для подключения маломощных устройств Интернета вещей. Эти протоколы обеспечивают связь точка-точка с аппаратным обеспечением на стороне пользователя без какого-либо подключения к интернету. Подключение в протоколах передачи данных IoT осуществляется через проводную или сотовую сеть. К протоколам передачи данных Интернета вещей относятся: MQTT (Message Queuing Telemetry Transport) телеметрический транспорт очереди сообщений Один из наиболее предпочтительных протоколов для устройств Интернета вещей, MQTT собирает данные с различных электронных устройств и поддерживает удаленный мониторинг устройств. Это протокол подписки/публикации, который работает по протоколу TCP, что означает, что он поддерживает событийный обмен сообщениями через беспроводные сети. CoAP (Constrained Application Protocol) CoAP это протокол интернет-утилиты для функционально ограниченных гаджетов. Используя этот протокол, клиент может отправить запрос на сервер, а сервер может отправить ответ обратно клиенту по протоколу HTTP. Для облегченной реализации он использует протокол UDP (User Datagram Protocol) и сокращает использование пространства. AMQP (Advanced Message Queuing Protocol) расширенный протокол очереди сообщений AMQP это протокол уровня программного обеспечения для ориентированной на сообщения среды промежуточного программного обеспечения, обеспечивающий маршрутизацию и постановку в очередь. Он используется для надежного соединения точка-точка и поддерживает безопасный обмен данными между подключенными устройствами и облаком. AMQP состоит из трех отдельных компонентов, а именно: обмена, очереди сообщений и привязки. Все эти три компонента обеспечивают безопасный и успешный обмен сообщениями и их хранение. Это также помогает установить связь одного сообщения с другим. Протокол AMQP в основном используется в банковской отрасли. Всякий раз, когда сообщение отправляется сервером, протокол отслеживает сообщение до тех пор, пока каждое сообщение не будет доставлено предполагаемым пользователям/адресатам без сбоев. M2M (Machine-to-Machine) протокол связи между машинами Это открытый отраслевой протокол, созданный для обеспечения удаленного управления приложениями устройств Интернета вещей. Коммуникационные протоколы М2М являются экономически эффективными и используют общедоступные сети. Он создает среду, в которой две машины взаимодействуют и обмениваются данными. Этот протокол поддерживает самоконтроль машин и позволяет системам адаптироваться к изменяющимся условиям окружающей среды. Коммуникационные протоколы M2M используются для интеллектуальных домов, автоматизированной аутентификации транспортных средств, торговых автоматов и банкоматов. XMPP (eXtensible Messaging and Presence Protocol) расширяемый протокол обмена сообщениями и информацией о присутствии XMPP имеет уникальный дизайн. Он использует механизм для обмена сообщениями в режиме реального времени. XMPP является гибким и может легко интегрироваться с изменениями. XMPP работает как индикатор присутствия, показывающий состояние доступности серверов или устройств, передающих или принимающих сообщения. Помимо приложений для обмена мгновенными сообщениями, таких как Google Talk и WhatsApp, XMPP также используется в онлайн-играх, новостных сайтах и голосовом стандарте (VoIP). Протоколы Интернета вещей предлагают защищенную среду для обмена данными. Очень важно изучить потенциал таких протоколов и стандартов, так как они создают безопасную среду. Используя эти протоколы, локальные шлюзы и другие подключенные устройства могут взаимодействовать и обмениваться данными с облаком.
img
До сих пор в этой серии статей примеры перераспределения маршрутов, над которыми мы работали, использовали один роутер, выполняющий перераспределение между нашими автономными системами. Однако с точки зрения проекта, глядя на этот роутер понимаем, что это единственная уязвимая точка, то есть точка отказа. Для избыточности давайте подумаем о добавлении второго роутера для перераспределения между несколькими автономными системами. То, что мы, вероятно, не хотим, чтобы маршрут объявлялся, скажем, из AS1 в AS2, а затем AS2 объявлял тот же самый маршрут обратно в AS1, как показано на рисунке. Хорошая новость заключается в том, что с настройками по умолчанию, скорее всего не будет проблем. Например, на приведенном выше рисунке роутер CTR2 узнал бы два способа добраться до Сети A. Один из способов — это через OSPF, к которому он подключен. Другой путь был бы через EIGRP AS, через роутер CTR1 и обратно в OSPF AS. Обычно, когда роутер знает, как добраться до сети через два протокола маршрутизации, он сравнивает значения административного расстояния (AD) протоколов маршрутизации и доверяет протоколу маршрутизации с более низким AD. В этом примере, хотя EIGRP AD обычно составляет 90, что более правдоподобно, чем OSPF AD 110, AD EIGRP External route (т. е. маршрута, который возник в другом AS) составляет 170. В результате OSPF-изученный маршрут CTR2 к сети A имеет более низкую AD (т. е. 110), чем AD (т. е. 170) EIGRP-изученного маршрута к сети A. Что в итоге? CTR2 отправляет трафик в Сеть A, отправляя этот трафик в OSPF AS, без необходимости передавать EIGRP AS. Время от времени, однако, нам потребуется произвести настройки некоторых не дефолтных параметров AD, или же нам понадобятся creative metrics, применяемые к перераспределенным маршрутам. В таких случаях мы подвергаемся риску развития событий, описанных на предыдущем рисунке. Давайте обсудим, как бороться с такой проблемой. Рассмотрим следующую топологию. В этой топологии у нас есть две автономные системы, одна из которых работает под управлением OSPF, а другая- под управлением EIGRP. Роутеры CTR1 и CTR2 в настоящее время настроены для выполнения взаимного перераспределения маршрутов между OSPF и EIGRP. Давайте взглянем на таблицы IP-маршрутизации этих магистральных роутеров. Обратите внимание, в приведенном выше примере, что с точки зрения роутера CTR2, лучший способ добраться до Сети 192.0.2.0 / 30 — это next-hop на следующий IP-адрес 192.0.2.5 (который является роутером OFF1). Это означает, что если бы роутер CTR2 хотел отправить трафик в сеть 192.0.2.0 /30, то этот трафик остался бы в пределах OSPF AS. Интересно, что процесс маршрутизации EIGRP, запущенный на роутере CTR2, также знает, как добраться до Сети 192.0.2.0 / 30 из-за того, что роутер CTR1 перераспределяет этот маршрут в Интересно, что процесс маршрутизации EIGRP, запущенный на роутере CTR2, также знает, как добраться до Сети 192.0.2.0 / 30 из-за того, что роутер CTR1 перераспределяет этот маршрут в EIGRP AS, но этот маршрут считается EIGRP External route. Поскольку EIGRP External route AD 170 больше, чем OSPF AD 110, в OSPF маршрут прописывается в таблице IP-маршрутизации роутера CTR2. Именно так обычно работает Route redistribution, когда у нас есть несколько роутеров, выполняющих перераспределение маршрутов между двумя автономными системами. Однако, что мы можем сделать, если что-то идет не так, как ожидалось (или как мы хотели)? Как мы можем предотвратить перераспределение маршрута, перераспределенного в AS, из этого AS и обратно в исходное AS, например, в примере, показанном на следующем рисунке. В приведенном выше примере роутер OFF1 объявляет сеть 192.168.1.0 / 24 роутеру CTR1, который перераспределяет этот маршрут из AS1 в AS2. Роутер OFF2 получает объявление маршрута от роутера CTR1 и отправляет объявление для этого маршрута вниз к роутеру CTR2. Роутер CTR2 затем берет этот недавно изученный маршрут и перераспределяет его от AS2 к AS1, откуда он пришел. Мы, скорее всего, не хотим, чтобы это произошло, потому что это создает неоптимальный маршрут. Общий подход к решению такой проблемы заключается в использовании route map в сочетании с tag (тегом). В частности, когда маршрут перераспределяется из одного AS в другой, мы можем установить тег на этом маршруте. Затем мы можем настроить все роутеры, выполняющие перераспределение, чтобы блокировать маршрут с этим тегом от перераспределения обратно в его исходный AS, как показано на следующем рисунке. Обратите внимание, что в приведенной выше топологии, когда маршрут перераспределяется от AS1 к AS2, он получает тег 10. Кроме того, роутер CTR2 имеет инструкцию (настроенную в карте маршрутов), чтобы не перераспределять любые маршруты из AS2 в AS1, которые имеют тег 10. В результате маршрут, первоначально объявленный роутером OFF1 в AS1, никогда не перераспределяется обратно в AS1, тем самым потенциально избегая неоптимального маршрута. Далее давайте еще раз рассмотрим, как мы можем настроить этот подход к тегированию, используя следующую топологию. В частности, на роутерах CTR1 и CTR2 давайте установим тег 10 на любом маршруте, перераспределяемом из OSPF в EIGRP. Затем, на тех же самых роутерах, мы предотвратим любой маршрут с тегом 10 от перераспределения из EIGRP обратно в OSPF. Для начала на роутере CTR1 мы создаем карту маршрутов, целью которой является присвоение тегу значения 10. CTR1 # conf term CTR1 (config) # route-map TAG10 CTR1 (config-route-map) # set tag 10 CTR1 (config-route-map) #exit CTR1 (config) # Обратите внимание, что мы не указали permit как часть инструкции route-map, и мы не указали порядковый номер. Причина в том, что permit — это действие по умолчанию, и карта маршрута TAG10 имела только одну запись. Далее мы перейдем к роутеру CTR2 и создадим карту маршрутов, которая предотвратит перераспределение любых маршрутов с тегом 10 в OSPF. Кроме того, мы хотим, чтобы роутер CTR2 маркировал маршруты, которые он перераспределяет из OSPF в EIGRP со значением тега 10. Это означает, что мы хотим, чтобы роутер CTR1 предотвратил перераспределение этих маршрутов (со значением тега 10) обратно в OSPF. Итак, пока мы находимся здесь на роутере CTR1, давайте настроим route-map, которая предотвратит Route redistribution со значением тега 10 в OSPF. CTR1 (config) # route-map DENYTAG10 deny 10 CTR1 (config-route-map) # match tag 10 CTR1 (config-route-map) # exit CTR1 (config) # route-map DENYTAG10 permit 20 CTR1 (config-route-map) # end CTR1 # Эта недавно созданная route-map (DENYTAG10) использует ключевые слова permit и deny, и у нее есть порядковые номера. Порядковый номер 10 используется для запрещения маршрутов с тегом 10. Затем имеем следующий порядковый номер (который мы пронумеровали 20), чтобы разрешить перераспределение всех других маршрутов. Теперь, когда мы создали наши две карты маршрутов, давайте применим TAG10 route map к команде EIGRP redistribute (к тегу routes, перераспределяемому в EIGRP со значением 10). Кроме того, мы хотим применить DENYTAG10 route map к команде OSPF redistribute (чтобы предотвратить перераспределение маршрутов, помеченных значением 10, обратно в OSPF AS). CTR1 # conf term CTR1 (config) # router eigrp 100 CTR1 (config-router) # redistribute ospf 1 route-map TAG10 CTR1 (config-router) # router ospf 1 CTR1 (config-router) # redistribute eigrp 100 subnets route-map DENYTAG10 CTR1 (config-router) # end CTR1 # Теперь нам нужно ввести зеркальную конфигурацию на роутере CTR2. CTR2#conf term CTR2(config)#route-map TAG10 CTR2(config-route-map) # set tag 10 CTR2(config-route-map) # exit CTR2(config)#route-map DENYTAG10 deny 10 CTR2(config-route-map) # match tag 10 CTR2(config-route-map) # exit CTR2(config) # route-map DENYTAG10 permit 20 CTR2(config-route-map) # exit CTR2(config) # router eigrp 100 CTR2(config-router) # redistribute ospf 1 route-map TAG10 CTR2(config-router) # router ospf 1 CTR2(config-router) # redistribute eigrp 100 subnets route-map DENYTAG10 CTR2(config-router) # end CTR2# Просто чтобы убедиться, что наши маршруты помечены, давайте проверим таблицу топологии EIGRP роутера OFF2. Обратите внимание, что все маршруты, перераспределенные в EIGRP из OSPF, теперь имеют тег 10, и мы сказали роутерам CTR1 и CTR2 не перераспределять эти маршруты обратно в OSPF. Именно так мы можем решить некоторые потенциальные проблемы, возникающие при перераспределении маршрутов. Дело за малым - прочитайте нашу статью про route redistribution с помощью IPv6.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59