По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, друг! В этой статье мы расскажем про подключение Third Party SIP телефонов (то есть телефонов и софтфонов от других вендоров, поддерживающих RFC3261) к Cisco Unified Communications Manager (CUCM) . В качестве примера будем подключать популярный и бесплатный софтфон X-Lite. Настройка Cisco Unified Communications Manager Первым делом создадим пользователя в CUCM. Для этого переходим во вкладку User Management → End User. Здесь указываем следующую информацию: User ID Password (не используется в X-Lite, но необходимо указать при создании пользователя) PIN (также не используется в X-Lite) Last Name Digest Credentials (это поле используется как пароль в X-Lite) Затем добавляем SIP Phone. Для этого переходим во вкладку Device – Phone и нажимаем Add. Здесь в поле Phone Type выбираем Third-party SIP Device. Basic поддерживает одну линию, Advanced поддерживает до восьми линий. Далее нужно заполнить следующие поля: MAC Address – нужно указать уникальный адрес, для X-Lite можно указать любой, т.к не используемся для авторизации; Device Pool – можно указать стандартный Default; Phone Button Template – Third-party SIP Device; Security Device Profile – стандартный профиль Third-party SIP Device; SIP Profile – Standard SIP Profile; Owner User ID и Digest User – End User которого мы создавали ранее; После этого нажимаем Save и переходим в окно настроек телефона. Здесь нажимаем Line [1] – Add a new DN и в поле Directory Number указываем номер, который будем использовать. После этого возвращаемся во вкладку User Management → End User, находим созданного пользователя, и проверяем находиться ли SIP Phone в Controlled Devices. Если нет, то нажимаем Device Association, и тут выбираем добавленный нами SIP Phone, после чего он должен появиться в поле Controlled Devices. Настройка софтфона Открываем программу X-Lite, переходим в меню Account Settings. Тут заполняем следующие поля: Display Name – указываем желаемое имя, которое будет отображаться в программе; User Name – указываем Directory Number (DN) в CUCM; Password – Digest Credentials в CUCM; Authorization user name – User ID в CUCM; Domain – адрес сервера CUCM; После этого нажимаем OK и наш софтфон должен зарегистрироваться.
img
В производственной среде даже минимальное время простоя недопустимо. Это может привести к потере доходов и, что хуже всего, репутации. Чтобы отладить возможные сценарии, которые приводят к простою, развертываются разные системы регистрации событий и мониторинга. Это помогает экономить средства и своевременно выявлять проблемы, которые могут возникнуть в будущем. В настоящее время большинство организаций, вне зависимости от размера, так или иначе использует принципы и инструменты DevOps. Наиболее популярны контейнеры и Kubernetes. И мониторинг такой системы проводится очень эффективно с помощью Prometheus. Но там, где Prometheus отстает – узкая часть. Она не обеспечивает централизованную систему логирования, и именно здесь на сцену выходит Loki. Что такое Grafana Loki? Grafana Loki - система агрегации логов с нескольких источников, запущенная компанией Grafana в 2018 году и выпущенная под лицензией Apache 2.0. Разработки системы были вдохновлены Prometheus. Он широко используется с поставщиками облачных технологий и такими инструментами, как Prometheus и Grafana. Loki аналогичен стеку ELK/EFK, но его проще настроить и использовать, и предлагает лучшие функциональными возможностями. Loki не индексирует содержимое журнала, а индексирует метки времени и набор меток для потока журнала. Это делает индекс меньше, что упрощает операции и в конечном итоге снижает стоимость. Преимущества Loki Ниже приведены преимущества использования Loki в стеке: Благодаря индексации только метаданных, Loki очень экономичен. Выполнение индексов для полнотекстовой обработки требует большей оперативной памяти, которая стоит дорогой. Хранение журналов на объектах хранения, как S3, также уменьшает себестоимость. Он поддерживает использование нескольких источников с использованием tenantID, поэтому данные из каждого ресурса хранятся отдельно. Loki можно запускать локально для небольших операций или легко масштабировать по горизонтали для крупномасштабных операций. Он использует динамический стиль для обеспечения согласованности кворума для операций чтения и записи. По умолчанию он настроен на создание 3 реплик журналов для защиты от сбоев процессов и внезапных выходов с места потери журналов. Да, это повлечет за собой дополнительные расходы, но не такие высокие – целостность данных более критична. Легко интегрируется с такими популярными инструментам, как Kubernetes, Prometheus и визуализация в Grafana. Архитектура Loki Архитектура Loki состоит из трех компонентов - Promtail, Loki и Grafana. Promtail - это агент, который должен быть установлен на каждом узле, на котором выполняются приложения или службы. Основной обязанностью Promtail является обнаружение цели, прикрепление меток к потокам подов, и сохранение этих логов в экземпляры Loki. Агент promtail передает журналы из локальной файловой системы на центральный сервер Loki. После этого можно выполнить обратный запрос журналов с помощью Grafana. Сценарии использования Loki Ниже приведены популярные сценарии использования системы ведения журнала, подобных Loki. Бизнес-аналитика: Это, пожалуй, самый распространённый пример использования, создание действенного понимания на основе данных журнала всегда может быть очень полезным. Loki может помочь в понимании данных журнала и даст возможность создавать новые стратегии для роста бизнеса. Например, с помощью данных журнала организации можно узнать коэффициенты эффективности рекламного канала. Мониторинг: Prometheus часто используется для мониторинга в разных отраслях. Но вы можете многое идентифицировать, отслеживая свои журналы с помощью таких инструментов, как Loki. Она, просматривая журналы и отправляя предупреждения после превышения порога, поможет вам отслеживать частоту ошибок на вашем веб-сайте. Отладка и устранение неполадок: Loki может помочь команде DevOps быстро находить ответ на такие вопросы, как когда произошел сбой приложения, причина его сбоя, его последний статус перед сбоем и т.д. Кибербезопасность: За последние несколько лет число кибератак на порталы электронной коммерции увеличивается в геометрической прогрессии. С помощью Loki можно выполнить проверку журналов, чтобы выявить любые угрозы, проблемы или вредоносные действия, происходящие в системе вашей организации. Если взлом был успешным, Loki мог бы быть полезным для криминалистов, чтобы детально понять, что происходило в системе. Это поможет им отследить хакеров. Соблюдение норм: Для соблюдения отраслевых норм организации должны вести журналы аудита до 7 лет. Местные власти могут проверять журналы в любое время. Loki может безопасно хранить ваши журналы аудита. Установка Loki и Promtail Далее покажем, как установить и визуализировать журналы на Grafana. В этой демонстрации мы используем общую конфигурацию, которая будет собирать журналы из /var/log/* log. Перейдите на страницу релизов Loki на Github, прокрутите вниз до Assets. Здесь вы найдете несколько пакетов Loki и Promtail. Загрузите пакет Loki в соответствии с используемой системой. Не устанавливайте пакеты cli или canary Loki. Я загружаю loki-linux-amd64.zip и promtail-linux-amd64.zip для моей системы Ubuntu. После завершения загрузки разархивируйте файлы Loki и Promtail и поместите их в единый каталог. Теперь загрузите общий файл конфигурации Loki и Promtail. Чтобы запустить Loki, выполните приведенную ниже команду с файлом конфигурации Loki. Это приведет к запуску Loki и отображению журналов Loki в терминале. loki-linux-amd64 loki-local-config.yaml promtail-linux-amd64 promtail-local-config.yaml Чтобы запустить Promtail, выполните приведенную ниже команду с файлом конфигурации Promtail. Promtail должен получить журналы в Loki. ./loki-linux-amd64 -config.file=loki-local-config.yaml Визуализация логов с помощью Loki и Grafana Grafana обеспечивает встроенную поддержку Loki. Loki уже присутствует в источниках данных Графаны. Шаг 1. Перейдите к разделу Конфигурации Grafana и нажмите кнопку Data Sources (Источники данных). Шаг 2. В окне источников данных можно выполнить поиск источника по имени или типу. Шаг 3. Введите в строку поиска слово Loki. Этот источник данных уже присутствует в Grafana. Нажмите кнопку Select (Выбрать). Шаг 4. Введите имя, которое вы хотите дать источнику данных, и поместите http://localhost:3100 (измените его на IP-адрес сервера, если Loki работает на сервере, отличном от Grafana) в строку URL. Порт прописываем потому, что мы запустили Loki на порту 3100. Нажмите кнопку Save and Test внизу. Если настройка Loki выполнена правильно, появится следующее сообщение в зеленом поле. Шаг 5.Нажмите на вкладку Explore (Обзор) на левой части панели. Выберите Loki в раскрывающемся списке выбора источника данных. Теперь неплохо было бы визуализировать активность журналов Grafana. Для этого необходимо добавить запрос {filename = "/var/log/grafana/grafana.log "} в строку обозревателя журналов. Зеленые полосы ниже представляют собой записи событий в файле журнала. Можно выбрать временной диапазон, для которого визуализация должна отображаться на панели мониторинга, а также задать интервал обновления запроса. Чтобы просмотреть более подробную информацию о событии, прокрутите вниз и щелкните по одной из записей журнала, она выведет всю имеющуюся информацию, связанные с данным событием. Заключение Распределенная система состоит из множества приложений или микросервисов, каждый из которых генерирует тысячи событий. Нужен экономичный способ сбора журналов, их хранения и последующего использования. Loki - идеальное решение для таких случаев. Фактически, за счет интеграции Loki в производственную среду, затраты на ведение журналов и мониторинг можно сократить до 75%.
img
Протокол связующего дерева (STP) был первоначально разработан Radia Perlman и впервые описан в 1985 году в Алгоритме распределенного вычисления связующего дерева в расширенной локальной сети. 1 STP уникален в списке рассматриваемых здесь плоскостей управления, поскольку изначально был разработан для поддержки коммутации, а не маршрутизации. Другими словами, STP был разработан для поддержки переадресации пакетов без времени жизни (TTL) и без подкачки заголовка per hop коммутационным устройством. Пакеты, коммутируемые на основе STP, передаются по сети без изменений. Построение дерева без петель Процесс построения дерева без петель выглядит следующим образом: Каждое устройство переводит все порты в заблокированный режим, чтобы ни один порт не пересылал трафик, и начинает объявлять блоки данных протокола моста (Bridge Protocol Data Units -BPDU) для каждого порта. Этот BPDU содержит: Идентификатор объявленного устройства, который является приоритетным в сочетании с локальным интерфейсом Media Access Control (MAC) адресом. Идентификатор корневого моста-кандидата. Это мост с самым низким идентификатором, о котором знает локальное устройство. Если каждое устройство в сети запускается в один и тот же момент, то каждое устройство будет объявлять себя как корневой мост-кандидат, пока не узнает о других мостах с более низким идентификатором моста. При получении BPDU на интерфейсе идентификатор корневого моста, содержащийся в BPDU, сравнивается с локально сохраненным наименьшим идентификатором корневого моста. Если идентификатор корневого моста, содержащийся в BPDU, меньше, то локально сохраненный идентификатор корневого моста заменяется вновь обнаруженным мостом с более низким идентификатором. После нескольких раундов объявлений каждый мост должен был обнаружить мост с наименьшим идентификатором моста в сети и объявить этот мост корневым. Это должно происходить, пока все порты на всех устройствах все еще заблокированы (не пересылают трафик). Чтобы убедиться, что это действительно произойдет, пока все порты все еще заблокированы, таймер устанавливается на достаточно длительное время, позволяющий выбрать корневой мост. После выбора корневого моста определяется кратчайший путь к корневому мосту. Каждый BPDU также содержит метрику для достижения корневого моста. Этой метрикой может быть количество переходов, но стоимость каждого перехода также может варьироваться в зависимости от административных переменных, таких как пропускная способность канала. Каждое устройство определяет порт, через который оно имеет самый дешевый путь к корневому мосту. Он отмечен как корневой порт. Если существует более одного пути к корневому мосту с одинаковой стоимостью, используется прерыватель связи. Обычно это идентификатор порта. Для любого звена, по которому соединены два моста: Мост с наименьшей стоимостью пути к корневому мосту выбирается для пересылки трафика от канала к корневому мосту. Порт, соединяющий выбранный сервер пересылки с каналом, помечается как назначенный порт. Порты, отмеченные как корневые или как назначенные порты, могут пересылать трафик. Результатом этого процесса является единое дерево, по которому доступны все пункты назначения в сети. На рисунке 1 показано, как STP работает в реальной топологии. Предположим, что все устройства на рисунке 1 были включены в один и тот же момент. Существует ряд возможных вариаций времени, но процесс построения набора безцикловых путей через сеть будет выглядеть, с точки зрения F, примерно так: Выберите корневой мост: F объявляет BPDU E и D с идентификатором и корневым мостом кандидата 32768.0200.0000.6666. D (при условии, что D не получил никаких BPDU) объявляет BDPU с идентификатором и корневым мостом кандидата 28672.0200.0000.4444. E (при условии, что E не получил никаких BPDU) объявляет BPDU с идентификатором и корневым мостом-кандидатом 32768.0200.0000.5555. На этом этапе F выберет D в качестве корневого моста и начнет объявлять BPDU со своим локальным идентификатором и корневым мостом-кандидатом, установленным на идентификатор D. В какой-то момент D и E получат BPDU от C, имеющего идентификатор нижнего моста (24576.0200.0000.3333). Получив этот BPDU, они оба установят свой ID корневого моста кандидата на ID C и отправят новые BPDU в F. Получив эти новые BPDU, F отметит, что новый идентификатор корневого моста кандидата ниже, чем его предыдущий идентификатор корневого моста кандидата, и затем выберет C в качестве корневого моста. После нескольких циклов BDPU все мосты в сети выберут C в качестве корневого моста. Отметьте корневые порты, найдя кратчайший путь к корню: Предположим, что каждая линия связи стоит 1. D получит BDPU от C с локальным идентификатором и идентификатором корневого моста 24576.0200.0000.3333 и стоимостью 0. D добавит стоимость достижения C, одного перехода, объявляя, что он может достичь корневого моста со стоимостью от 1 до F. E получит BDPU от C с локальным идентификатором и идентификатором корневого моста 24576.0200.0000.3333 и стоимостью 0. E добавит стоимость достижения C, одного перехода, объявляя, что он может достичь корневого моста со стоимостью от 1 до F. F теперь имеет два объявления о корневом мосте с равной стоимостью. Он должен разорвать связь между этими двумя доступными путями. Для этого F проверяет идентификаторы объявленных мостов. Идентификатор моста D меньше, чем E, поэтому F будет отмечать свой порт, направленный к D, как корневой порт. Маркировка назначенных портов на каждом канале: Единственный другой порт F направлен в сторону E. Должен ли быть заблокирован этот порт? Чтобы определить это, F сравнивает свой локальный идентификатор моста с идентификатором моста E. Приоритеты одинаковы, поэтому для принятия решения необходимо сравнить адреса локальных портов. Локальный идентификатор F заканчивается на 6666, а у E - на 5555, поэтому E меньше. F не отмечает интерфейс к E как назначенный порт; вместо этого он отмечает этот порт как заблокированный. E выполняет то же сравнение и отмечает свой порт в направлении F как назначенный порт. D сравнивает свою стоимость по отношению к корню со стоимостью F по отношению к корню. Стоимость D ниже, поэтому он пометит свой порт в направлении D как назначенный порт. На рисунке 2 показаны заблокированные, назначенные и корневые порты после завершения этих вычислений. Порты на рисунке 2 помечены как bp для заблокированного порта, rp для корневого порта и dp для назначенного порта. Результатом процесса является дерево, которое может достигать любого сегмента сети, и, следовательно, хостов, подключенных к любому сегменту в сети. Один интересный момент, связанный с STP, заключается в том, что в результате получается единое дерево по всей топологии, закрепленное на корневом мосту. Если какой-либо хост, подключенный к E, отправляет пакет на хост, подключенный к B или F, пакет должен проходить через C, корневой мост, потому что один из двух портов на каналах [F, E] и [E, B] является заблокирован. Это не самое эффективное использование полосы пропускания, но оно предотвращает зацикливание пакетов во время нормальной пересылки. Как обрабатывается обнаружение соседей в STP? Обнаружение соседей вообще не рассматривается с точки зрения надежной передачи информации по сети. Каждое устройство в сети строит свои собственные BPDU. Эти BPDU не проходят через какое-либо устройство, поэтому нет необходимости в сквозной надежной транспортировке в плоскости управления. Однако обнаружение соседей используется для выбора корневого моста и построения дерева без циклов по всей топологии с использованием BPDU. А как насчет отброшенных и потерянных пакетов? Любое устройство, на котором запущен протокол STP, периодически повторно передает свои BPDU по каждому каналу (в соответствии с таймером повторной передачи). Устройству, на котором запущен протокол STP, требуется несколько отброшенных пакетов (согласно таймеру отключения), чтобы предположить, что его соседи вышли из строя, и, следовательно, перезапустить вычисление состояний корневого моста и порта. В STP нет двусторонней проверки подключения ни для каждого соседа, ни на всем пути. Также не существует какой-либо проверки maximum Transmission Unit (MTU). STP изучает топологию, комбинируя BPDU с информацией о локальных каналах для каждого узла. Однако в сети нет ни одного узла с таблицей, описывающей всю топологию. Изучение доступных пунктов назначения Как STP разрешает пересылку? В частности, как устройства, на которых запущен протокол STP, узнают о доступных местах назначения? Рассмотрим рисунок 3. На рис. 3 показано состояние сети с вычисленным связующим деревом и каждым портом, отмеченным как назначенный или корневой порт. В этой топологии нет заблокированных портов, потому что нет петель. Предположим, B, C и D не имеют информации о подключенных устройствах; A отправляет пакет в сторону E. Что происходит в этот момент? A передает пакет по каналу [A, B]. Поскольку B имеет назначенный порт на этом канале, он примет пакет (коммутаторы принимают все пакеты на назначенных портах) и проверит адреса источника и назначения. B может определить, что A доступен через этот назначенный порт, потому что он получил пакет от A на этом порту. Исходя из этого, B вставит MAC-адрес A как достижимый в свою таблицу пересылки через свой интерфейс на канале [A, B]. B не имеет информации о E, поэтому он будет рассылать этот пакет через каждый из своих незаблокированных портов. В этом случае единственный другой порт B - это его корневой порт, поэтому B пересылает этот пакет в C. Это лавинная рассылка называется Broadcast, Unknown, и Multicast (BUM) трафиком. BUM-трафик - это то, чем должна каким-то образом управлять каждая плоскость управления, которая изучает пункты назначения в процессе пересылки. Когда C получает этот пакет, он проверяет адрес источника и обнаруживает, что A доступен через назначенный порт, подключенный к [B, C]. Он вставит эту информацию в свою локальную таблицу пересылки. У C также нет информации о том, где E находится в сети, поэтому он просто лавинно рассылает пакет по всем незаблокированным портам. В этом случае единственный другой порт C - это канал [C, D]. D повторяет тот же процесс, которому следовали B и C, узнавая, что A доступен через его корневой порт по каналу [C, D], и лавинно направляет пакет по каналу [D, E]. Когда E получает пакет, он обрабатывает информацию и отправляет ответ обратно A. Когда D получает этот ответный пакет от E, он проверяет адрес источника и обнаруживает, что E доступен через назначенный ему порт по каналу [D, E]. D действительно знает обратный путь к A, поскольку он обнаружил эту информацию при обработке первого пакета в потоке, идущем от A к E. Он будет искать A в своей таблице пересылки и передавать пакет по каналу [C, D]. C и B будут повторять процесс, который D и C использовали для определения местоположения E и перенаправления обратного трафика обратно в A. Таким образом, узнавая адрес источника по входящим пакетам, а также путем лавинной рассылки или пересылки пакетов по исходящим каналам, каждое устройство в сети может узнать о каждом достижимом месте назначения. Поскольку протокол STP основан на изучении доступных адресатов в ответ на пакеты, передаваемые по сети, его классифицируют как реактивную плоскость управления. Обратите внимание, что этот процесс обучения происходит на уровне хоста; подсети и IP-адреса не изучаются, а скорее изучается физический адрес интерфейса хоста. Если один хост имеет два физических интерфейса на одном и том же канале, он будет отображаться как два разных хоста для плоскости управления STP. Как удаляется информация из таблиц пересылки на каждом устройстве? Через процесс тайм-аута. Если запись пересылки не была использована в определенное время (таймер удержания), она удаляется из таблицы. Следовательно, STP полагается на кэшированную информацию пересылки. Подведение итогов о протоколе связующего дерева STP явно не является ни протоколом состояния канала, ни протоколом вектора пути. Это протокол вектора расстояния? Любая путаница в том, как классифицировать протокол, проистекает из первоначального выбора корневого моста перед вычислением кратчайших путей. Удалив этот первый шаг, проще классифицировать STP как протокол вектора расстояния, используя распределенную форму алгоритма Беллмана-Форда для расчета путей без петель по топологии. Что нужно сделать с первоначальным расчетом корневого моста? Эта часть процесса гарантирует, что во всей сети будет только одно дерево кратчайшего пути. Таким образом, STP можно классифицировать как протокол вектора расстояния, который использует алгоритм Беллмана-Форда для вычисления единого набора кратчайших путей для всех пунктов назначения во всей сети. Другими словами, STP вычисляет дерево кратчайшего пути по топологии, а не по адресатам. Почему так важно, чтобы одно дерево вычислялось по всей сети? Это связано со способом, которым STP изучает информацию о доступности: STP - это реактивная плоскость управления, изучающая достижимость в ответ на фактические пакеты, проходящие через сеть. Если бы каждое устройство построило отдельное дерево с корнями в самом себе, этот реактивный процесс привел бы к несогласованному представлению топологии сети и, следовательно, к петлям пересылки. STP и широковещательные штормы Широковещательные рассылки - важная часть обнаружения служб в большинстве приложений. Например, как показано на рисунке 4, как A может обнаружить присутствие определенной службы на F? Самое простое, что может сделать A в этой ситуации, - это отправить какой-то пакет, который будет доставлен на каждый хост, подключенный к сети, и дождаться ответа от хоста, на котором запущена данная служба. Таким образом, A отправляет широковещательную рассылку с вопросом о конкретной услуге или устройстве. Как B, C, D и E должны относиться к этой трансляции? Поскольку широковещательная рассылка не является «обучаемым» адресом (широковещательную рассылку должно принимать каждое устройство в каждом сегменте), лучше всего для коммутаторов пересылать пакет на каждый неблокированный порт. Что произойдет, если А выполнит много рассылок? Что произойдет, если хост отправит достаточно широковещательных рассылок, чтобы отбросить BPDU? В этом случае сам STP запутается и, скорее всего, создаст цикл пересылки в топологии. Такой цикл пересылки будет, конечно, пересылать широковещательные пакеты постоянно, так как нет TTL для отбрасывания пакетов после того, как они пересекли сеть определенное количество раз. Каждая рассылка, передаваемая A, в этой ситуации останется в сети навсегда, петляя, возможно, между коммутаторами B, C, D и E. И каждая рассылка, добавленная к нагрузке сети, конечно же, предотвратит успешную передачу или прием BPDU, предотвращая схождение STP. Следовательно, трафик в сети препятствует сходимости STP, а отсутствие сходимости увеличивает нагрузку трафика на саму сеть – возникает положительный цикл обратной связи, который вызывает хаос во всей сети. Эти события называются широковещательными штормами и достаточно распространены в сетях на основе STP, чтобы заставить мудрых проектировщиков и операторов сети ограничивать область действия любого домена STP. Существование широковещательных штормов также привело к ряду модификаций работы STP, таких как простая замена базового протокола плоскостью управления истинным состоянием канала.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59