По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Есть два типа алгоритмов шифрования, которые используются для шифрования данных. Это симметричные и асимметричные алгоритмы. В этой статье мы подробно изучим функции и операции алгоритмов симметричного шифрования. Чтобы зашифровать текстовое сообщение, требуются как шифр, так и ключ. При симметричном шифровании ключ используется для шифрования сообщения открытого текста в зашифрованный текст, и тот же ключ используется для дешифрования зашифрованного текста обратно в открытый текст. Хотя алгоритмы симметричного шифрования обычно используются во многих системах, основным недостатком является то, что в случае потери или кражи секретного ключа зашифрованный текст может быть взломан. Если злоумышленник сможет получить ключ, он сможет расшифровать сообщение и просмотреть его содержимое. Поэтому чрезвычайно важно, чтобы ключ всегда был в безопасности. Симметричные алгоритмы используют длину ключа в диапазоне от 40 до 256 бит. Эти длины ключей намного короче, чем те, которые используются в асимметричных алгоритмах. Однако симметричные алгоритмы способны обеспечить лучшую производительность, например, при более быстром шифровании данных, по сравнению с асимметричными алгоритмами. Чтобы лучше понять, как работают симметричные алгоритмы, давайте представим, что есть два пользователя, Алиса и Сергей Алексеевич, которые хотят обеспечить конфиденциальность сообщений, которыми они обмениваются. Оба пользователя знают о Pre-Shared Key (PSK) или секретном ключе до обмена сообщениями. На следующем рисунке демонстрируется, что Алиса использует секретный ключ для шифрования текстового сообщения перед его отправкой Сергею Алексеевичу: После того, как сообщение будет зашифровано, Алиса отправит его Сергею Алексеевичу, который будет использовать тот же PSK или секретный ключ, чтобы расшифровать сообщение и получить исходное текстовое сообщение, как показано ниже: Тот же процесс повторяется всякий раз, когда Сергей Алексеевич хочет отправить сообщение Алисе. Тот же ключ, который используется для шифрования данных, используется для дешифрования сообщения. Симметричные алгоритмы Симметричные алгоритмы могут шифровать данные, используя либо блочный шифр, либо потоковый шифр. Блочный шифр берет блок фиксированной длины открытого текстового сообщения и выполняет процесс шифрования. Эти блоки обычно являются 64-битными или 128-битными блоками. На следующем рисунке представлен блочный шифр: В свою очередь, потоковый шифр будет шифровать либо один бит, либо один байт за раз. Вместо того, чтобы шифровать весь блок открытого текста, представьте, что с помощью потокового шифра размер блока уменьшается до одного бита или одного байта. На следующем рисунке представлен потоковый шифр: Считается, что потоковые шифры выполняют шифрование данных быстрее, чем блочные шифры, поскольку они непрерывно шифруют данные по одному биту или одному байту за раз. Ниже приводится список симметричных алгоритмов и их характеристики: Data Encryption Standard (DES): это очень старый алгоритм симметричного шифрования, который шифрует данные с использованием блоков размером 64 бита и размером ключа 54 бита. Triple Data Encryption Standard (3DES): это более новая версия DES. 3DES выполняет процесс шифрования трижды. Это означает, что первый раунд берет данные открытого текста и выполняет шифрование для создания зашифрованного текста. Он будет использовать зашифрованный текст в качестве входных данных и снова выполнит его шифрование, что является вторым этапом. Он возьмет новый зашифрованный текст из второго раунда и выполнит его шифрование, чтобы создать окончательный результат, который завершает третий раунд шифрования, отсюда и название тройной DES. 3DES использует ключи размером 112 бит и 168 бит. Advanced Encryption Standard (AES): широко используется во многих современных системах передачи данных и протоколах. AES использует ключи размером 128, 192 и 256 бит. Он выполняет шифрование данных в блоках фиксированного размера: 128, 192 и 256 бит. AES считается намного более безопасным, чем алгоритмы шифрования DES и 3DES. Безопасный сетевой протокол Secure Shell (SSH) версии 2 использует алгоритм AES с режимом счетчика (AES-CRT) в качестве предпочтительного алгоритма шифрования данных. Software-Optimized Encryption Algorithm (SEAL): это еще один симметричный алгоритм. SEAL - это алгоритм потокового шифрования, который использует размер ключа 160 бит. Rivest Cipher (RC): это серия наборов шифров, созданных Роном Ривестом, таких как RC2, RC3, RC4, RC5 и RC6. Наиболее распространенным является RC4, потоковый шифр, использующий размер ключа до 256 бит. Асимметричные алгоритмы шифрования Асимметричные алгоритмы выполняют шифрование данных с использованием двух разных ключей в виде пары ключей. Это означает, что один ключ используется для шифрования данных, а другой-для расшифровки сообщения. Если какой-либо ключ потерян или украден, сообщение не будет взломано или прочитано. На следующем рисунке показан пользователь Алиса, использующий ключ для шифрования текстового сообщения: Когда целевой хост, Сергея Алексеевича, получает сообщение от отправителя, он будет использовать другой ключ для расшифровки сообщения, как показано на следующем рисунке: Асимметричные алгоритмы используют пару ключей, известную как открытый (public) и закрытый (private) ключи. Открытый ключ предоставляется любому, кто хочет связаться с вами, отсюда и название открытый ключ. Закрытый ключ хранится у вас. Только пользователи пары ключей могут шифровать и расшифровывать данные. Никакие другие ключи не могут быть использованы для расшифровки сообщения, зашифрованного вашим закрытым ключом. Важное примечание! Асимметричное шифрование использует размер ключа от 512 до 4096 бит. Однако рекомендуется размер ключа в 1024 бита или больше. Чтобы лучше понять принцип работы этих открытых и закрытых ключей, давайте представим, что есть два пользователя, Сергей Алексеевич и Алиса, которые хотят зашифровать данные между собой, используя асимметричное шифрование. Для начала предположим, что Алиса хочет отправить сообщение Сергею Алексеевичу. Для этого Сергей Алексеевич должен создать пару, открытого и закрытого ключей и поделиться открытым ключом с Алисой следующим образом: Закрытый ключ хранится у Сергея Алексеевича, а Алиса получает только открытый ключ Сергея Алексеевича. Алиса будет использовать открытый ключ Сергея Алексеевича для шифрования любого сообщения, которое она хочет отправить Сергею Алексеевичу. Когда Сергей Алексеевич получит сообщение, то он будет использовать свой закрытый ключ, чтобы расшифровать сообщение и прочитать его содержимое. На следующем рисунке показано, как Алиса отправляет Сергею Алексеевичу зашифрованное сообщение: Как показано на предыдущем рисунке, Алиса использовала открытый ключ Сергея Алексеевича для шифрования сообщения. Если злоумышленник перехватит зашифрованный текст во время передачи, сообщение будет в безопасности, поскольку злоумышленник не имеет закрытого ключа Сергея Алексеевича. Ниже приведены некоторые сетевые протоколы, использующие асимметричные алгоритмы: SSH Secure Sockets Layer (SSL) Internet Key Exchange (IKE) Pretty Good Privacy (PGP) Ниже приведен список асимметричных алгоритмов и их функции: Diffie-Hellman (DH): DH не является алгоритмом шифрования данных, а скорее используется для безопасной доставки пар ключей по незащищенной сети, такой как Интернет. Проще говоря, он позволяет Сергею Алексеевичу и Алисе согласовывать ключ, который может использоваться для шифрования сообщений, отправляемых между ними. DH использует ключи размером 512 бит, 1024 бит, 2048 бит, 3072 бит и 4096 бит. Ниже приведен список различных групп DH и их соответствующих размеров ключей: группа DH 1: 768 бит, группа 2 DH: 1024 бит, группа 5 DH: 1536 бит, группа 14 DH: 2048 бит, группа 15 DH: 3072 бит, и группа 16 DH: 4096 бит. Digital Signature Standard (DSS): DSS - это асимметричный алгоритм, который используется для цифровых подписей. Алгоритм цифровой подписи (DSA) - это алгоритм с открытым ключом, который использует схему подписи ElGamal. Размеры ключей варьируются от 512 до 1024 бит. Rivest-Shamir-Adleman (RSA): этот алгоритм шифрования был создан Ron Rivest, Adi Shamir, и Leonard Adleman. Он был разработан как алгоритм асимметричного шифрования, который использует пары открытого и закрытого ключей между устройствами. RSA использует ключи размером от 512 до 2048 бит. EIGamal: EIGamal - еще один алгоритм асимметричного шифрования, который использует пару открытого и закрытого ключей для шифрования данных. Этот алгоритм основан на процессе согласования ключей DH. Примечательной особенностью использования этого алгоритма является то, что он принимает открытый текст (input) и преобразует его в зашифрованный текст (output), который вдвое превышает размер входного сообщения. Elliptical Curve (EC): EC используется с асимметричным шифрованием. EC использует кривые вместо чисел. Поскольку мобильные устройства, такие как смартфоны, не имеют высокопроизводительного процессора и объема памяти, как компьютер, EC использует ключи меньшего размера.
img
Одним из ключевых факторов, которые следует учитывать при разработке веб-сайта или веб-приложения, является пропускная способность, которая потребуется вашему сетапу для правильной работы. Знание требований к пропускной способности поможет вам выбрать правильного хостинг-провайдера и составить план в соответствии с вашими потребностями. В этом руководстве мы покажем вам, как рассчитать пропускную способность, необходимую для вашего веб-сайта или веб-приложения. Что такое пропускная способность? Пропускная способность представляет собой максимальную емкость данных, которые могут быть переданы по сети за одну секунду. Наименьшая единица измерения выражается в битах в секунду. С развитием технологий интернет-провайдеры теперь используют мегабит в секунду (Мбит/с) или гигабит в секунду (Гбит/с). Пропускная способность - это термин, который описывает объем трафика между вашим сайтом и пользователями через Интернет. Не путайте пропускную способность со скоростью соединения, поскольку они не совпадают. Пропускная способность против передачи данных Термин пропускная способность иногда используется как синоним передачи данных. На самом деле это две очень разные вещи. Пропускная способность определяет максимальный потенциальный объем данных, который вы можете передавать за единицу времени между вашим сайтом и пользователями. Этот термин отражает не фактические данные, которые вы передаете, а теоретический объем данных, который вы можете обработать за одну секунду. С другой стороны, под передачей данных понимается фактический общий объем данных, которые вы передаете за период, обычно за месяц. Единицы измерения - килобайты (КБ), мегабайты (МБ), гигабайты (ГБ), а для больших приложений - терабайты (ТБ). Важность пропускной способности Расчет правильной полосы пропускания для вашего веб-приложения имеет решающее значение на этапе разработки и для обеспечения стабильной производительности. Обязательно учитывайте внезапные всплески трафика. Хорошее правило - на 50% превышать прогнозируемую потребность в пропускной способности. Однако при выборе веб-хостинга расчет может показаться ненужным, поскольку большинство хостинг-провайдеров предлагают планы с «неограниченной» пропускной способностью. Примечание: ваша система может со временем расширяться, и требования к пропускной способности могут возрасти. Поэтому выберите масштабируемый план, позволяющий при необходимости изменять пропускную способность. Что такое неограниченная пропускная способность Многие провайдеры рекламируют планы с «неограниченной» пропускной способностью. Эта формулировка подразумевает, что вы можете передавать столько данных, сколько вам нужно. Здесь веб-хостинг предлагает фиксированную ставку, которая упрощает покупку и поиск решения для хостинга. Однако правда в том, что хостинговые компании не могут предложить действительно неограниченную пропускную способность. Затраты и технологические требования были бы слишком высокими для этого. По этой причине планы с неограниченной пропускной способностью предлагают достаточную пропускную способность, чтобы удовлетворить потребности большинства клиентов. Таким образом, планы кажутся неограниченными для этих пользователей. В большинстве случаев обычные планы покрывают стандартные требования к веб-приложениям. Есть также планы для более продвинутых клиентов, обеспечивающие скорость, превышающую ту, которую предлагают обычные безлимитные планы. Расчет требований к пропускной способности Прежде чем рассчитывать требования к пропускной способности, вы должны знать средний размер страницы на вашем веб-сайте. Чтобы определить размер, используйте тест времени загрузки и учитывайте данные как минимум для десяти страниц. Затем рассчитайте средний размер страницы для вашего сайта. Имея эту информацию, вам необходимо учесть еще два элемента: Количество посещений ваших страниц. Дополнительная пропускная способность может потребоваться в случае всплеска трафика. Это предотвращает потенциальные проблемы с производительностью или даже простои. Есть две формулы для расчета необходимой пропускной способности. Требования к пропускной способности веб-сайта без скачиваний пользователем Если ваш веб-сайт не предлагает посетителям загружаемый контент, используйте следующую формулу для расчета необходимой пропускной способности: Пропускная способность = Средний размер страницы * Среднее количество просмотров страницы * Среднее количество посетителей в день * 30 * Избыточность Средний размер страницы - это средний размер вашей веб-страницы. Среднее количество просмотров страницы - среднее количество просмотров страницы на посетителя. Среднее количество посетителей в день - среднее количество посетителей в месяц. 30 - число дней в месяце. Избыточность - фактор безопасности для предотвращения скачков трафика. Диапазон от 1,3 до 1,8. Расчет немного отличается, когда ваш сайт предлагает загружаемый контент. Требования к пропускной способности веб-сайта со скачиванием Чтобы рассчитать необходимую пропускную способность, когда ваш веб-сайт предлагает загружаемый контент, используйте следующую формулу: Пропускная способность = [(Средний размер страницы * Среднее количество просмотров страницы * Среднее количество посетителей в день) + (Средняя загрузка в день * Средний размер файла)] * 30 * Избыточность Новые параметры в этой формуле: Среднее количество загрузок в день - представляет собой среднее количество загружаемых файлов в день. Средний размер файла - это средний размер загружаемых файлов. С помощью этого расчета вы знаете прогнозируемые требования к пропускной способности для пользовательских загрузок.
img
В одной из предыдущих статей мы рассматривали такой инструмент сетевого инженера как Puppet. Как мы выяснили, это решение экономит кучу времени администратора в сетях, которые насчитывают большое количество узлов. При этом в силу кроссплатформенности данное решение позволяет осуществлять настройку различных операционных систем и их версий для корректной работы сети. Эта программа имеет клиент-серверную архитектуру, то есть периферийные машины, на которых установлена клиентская часть, запрашивают и получают обновленные файлы с актуальными параметрами конфигурации, а затем программа осуществляет обновление параметров операционной системы в автоматическом режиме. Сегодня мы разберем конкретные примеры использования данного решения -зачем оно нужно и где оно применяется. На самом деле, сфера применения данного решения довольно широка. Это и небольшая локальная сеть группы разработчиков небольшого приложения на Android, сети покрупнее у компаний вроде небольших торговых сетей, сети больших организаций (таких, например, как сеть промышленного предприятия), и сети мегакорпораций, насчитывающие внутри себя десятки тысяч узлов. Как мы и писали ранее, манифесты Puppet, которые пишутся на языке, имеющем определенное сходство с Ruby (на котором и написана, в общем-то программа Puppet), хранятся в хранилище на сервере. Актуальные конфигурации настроек выдаются по запросам от клиентских машин. Это позволяет осуществлять быструю передачу однотипных настроек конфигурации, а затем устанавливать их параллельно на каждой клиентской машине, используя ее аппаратные мощности. Это решение применяется во многих компаниях. Официальными партнерами Puppet являются Нью-йоркская фондовая биржа NYSE, которая является частью межконтинентальной фондовой биржи ICE. На текущий момент более 75% серверов ICE управляются посредством Puppet. Применение данного решения позволило снизить нагрузку на администратора теперь один администратор без снижения производительности может обслуживать в 2,2 раза больше серверов, чем раньше. Значительно повышается скорость подготовки среды там, где раньше требовалось 1-2 дня, Puppet справляется примерно за полчаса. Кроме этого, Puppet замечательно справляется с передачей настроек безопасности, что позволяет обеспечить общую безопасность во всей системе, исключая уязвимости на периферии. Также использует Puppet такой представитель IT-индустрии, как компания Splunk.Inc. Эта компания занимается разработкой систем анализа данных для крупных корпораций и имеет офисы в 12 странах мира. С помощью Puppet здесь реализованы улучшения работы облачной технологии, а также улучшилась поддержка конечных пользователей. Специалисты компании отмечают значительное ускорение развертывания сети, и более эффективное управление клиентской средой, за счет лучшей согласованности Puppet по сравнению с ранними программными решениями. Кроме того, Puppet экономит время разработчиков если ранее многие машины требовали ручной корректировки настроек, то сейчас все происходит автоматически, позволяя выделять высвобождаемое время для разработки новых программных решений и обслуживания пользователей. Еще одним ярким примером эффективного применения Puppet является компания Staples один из ведущих производителей канцтоваров в мире. У этой компании широко разветвлённая сеть офисов, поэтому построение надежной и эффективной сети это одна из приоритетных задач. Используя решения Puppet, корпорация Staples развертывает сети более эффективно, а за счет отличной совместимости Puppet с различными операционными системами и другими программными продуктами, Staples успешно комбинирует решения различных команд разработчиков, подбирая и внедряя наиболее эффективные из них в свою систему управления сетью. Также специалисты компании Staples отмечают высокую надежность и эффективность данного решения. Если же упоминать использование Puppet в сравнительно небольших организациях, то администраторы небольших компаний также отмечают гибкость и удобство этой системы. Если компания насчитывает до 500 сотрудников, то она будет иметь не слишком крупную сеть. Но даже в этом случае сетевой инженер должен произвести настройку каждой машины. Разумеется, настраивать вручную несколько сотен рабочих станций - дело неблагодарное. Поэтому Puppet серьезно сокращает время на обслуживание сети и позволяет админу заняться другими задачами.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59