По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
С каждым днем современные сети и системы становятся только сложнее. Даже сеть небольшого и среднего масштаба SME (Small/Medium Enterprises) могут быть использовать сложнейшие системы как с точки зрения архитектуры, так и сложности администрирования. Nagios создан как мощный инструмент для мониторинга, администрирования и уведомления об отказах систем. Во фреймворк Nagios заложен мощный инструментарий с большим количеством опций, использование которых требует помимо понимания принципов работы Nagios, а так же и глубокого понимания используемых в корпоративном контуре систем. Это очень важный момент, так как Nagios не может научить системного администратора работе с его собственными системами, но он может послужить очень мощным инструментом в работе с ними. Итак, что же может Nagios? Ниже, мы приводим лишь небольшой обобщенный список функционала: Проверка работоспособности сервера Уведомление в случаях отказа сервера (email/SMS) Проверка запуска сервиса (например почта, веб-сервер (http), pop, ssh) Проверка процессов (или Windows сервиса) Обработка статистики с сервера (ключевые перфомансы сервера) Возможность настройки уведомлений определенных событий только для назначенной группы или конкретного пользователя Формирование отчетов по downtime (времени сервера в нерабочем состоянии) Nagios не содержит никаких встроенных инструментов проверки (плагинов). Важно понять, что Nagios обеспечивает надежный и расширяемый фреймворк для любого вида мониторинга, который только может придумать пользователь. Но как Nagios выполняет мониторинг сети? Существует огромное количество уже готовых плагинов, которые позволяет выполнять различные виды мониторинга. И если для вашей сети необходимо создать специфический алгоритм мониторинга, вы можете написать данный плагин самостоятельно. Почему Nagios? Nagios - отличный выбор для тех, кто хочет иметь широкий диапазон инструментов мониторинга. Основными конкурентными преимуществами Nagios являются: Nagios это Open Source решение Надежное решение Высочайший набор возможностей для конфигурации Легко масштабируется Активное сообщество разработчиков, где постоянно совершенствуется данная система мониторинга Nagios работает на множестве операционных систем Nagios можно адаптировать под огромное количество задач. Выделим наиболее популярные адаптации этой системы мониторинга: Ping для отслеживания доступности хоста Мониторинг сервисов, таких как SMTP, DHCP, FTP, SSH, Telnet, HTTP, NTP, DNS, POP3, IMAP и так далее Сервера баз данных, такие как SQL Server, Oracle, MySQL и Postgres Мониторинг на уровне приложений, например, web – сервер Apache, Postfix, LDAP, Citrix b так далее. Как Nagios работает? Nagios работает в качестве демона (фонового процесса) на выделенном сервере, периодически отправляя ICMP запросы на хост мониторинга. Полученная информация обрабатывается на сервере и отображается администратору в рамках WEB – интерфейса. Опционально, администратор может настроить уведомления на почту, интегрируя сервер мониторинга с почтовым сервером, либо настроить СМС уведомления.
img
Оболочка bash предлагает широкий выбор сочетаний клавиш, которые вы можете использовать. Они будут работать в bash в любой операционной системе. Работа с процессами Используйте следующие сочетания клавиш для управления запущенными процессами: Ctrl + C: прервать (убить) текущий процесс, запущенный в терминале на переднем плане. Это посылает процессу сигнал SIGINT, который технически является просто запросом - большинство процессов его учтут, но некоторые могут и проигнорировать. Ctrl + Z: приостановить текущий процесс, запущенный в bash на переднем плане. Это отправляет процессу сигнал SIGTSTP. Чтобы позже вернуть процесс на передний план, используйте команду fg имя_процесса. Ctrl + D: закрыть оболочку bash. Это отправляет маркер EOF (End of file - конец файла) в bash, и bash завершает работу, когда получает этот маркер. Это похоже на команду exit. Перемещение курсора Используйте следующие сочетания клавиш, чтобы быстро перемещать курсор по текущей строке при вводе команды. Ctrl + A или Home: перейти к началу строки. Ctrl + E или End: перейти в конец строки. Alt + B: перейти на одно слово влево (назад). Ctrl + B: перейти на один символ влево (назад). Alt + F: перейти вправо (вперед) на одно слово. Ctrl + F: перейти вправо (вперед) на один символ. Ctrl + XX: перемещение между началом строки и текущей позицией курсора. То есть можно нажать Ctrl + XX, чтобы вернуться в начало строки, что-то изменить, а затем нажать Ctrl + XX, чтобы вернуться в исходную позицию курсора. Чтобы использовать этот шорткат, удерживайте клавишу Ctrl и дважды нажмите X. Исправление опечаток Эти сочетания позволяют исправлять опечатки и отменять нажатия клавиш. Alt + T: заменить текущее слово предыдущим. Ctrl + T: поменять местами два последних символа перед курсором. Можно использовать, чтобы быстро исправить опечатки, когда вы вводите два символа в неправильном порядке. Ctrl + _: отменить последнее нажатие клавиши. Можно использовать несколько раз подряд. Вырезка и склейка Bash включает в себя несколько основных функций вырезания и вставки. Ctrl + W: вырезать слово перед курсором и добавить его в буфер обмена. Ctrl + K: вырезать часть строки после курсора, добавив ее в буфер обмена. Ctrl + U: вырезать часть строки перед курсором, добавив ее в буфер обмена. Ctrl + Y: вставить последнее вырезанное из буфера обмена. Заглавные буквы Оболочка bash может быстро преобразовывать символы в верхний или нижний регистр: Alt + U: вводить каждый символ от курсора до конца текущего слова с заглавной буквы, переводя символы в верхний регистр. Alt + L: убирает заглавные буквы с каждого символа от курсора до конца текущего слова, переводя символы в нижний регистр. Alt + C: ввести заглавную букву под курсором. Ваш курсор переместится в конец текущего слова. Табуляция Завершение при помощи табуляции - очень полезная функция bash. При вводе имени файла, каталога или команды нажмите Tab, и bash автоматически завершит ввод, если это возможно. Если нет, bash покажет вам различные возможные совпадения, и вы можете продолжить вводить и нажимать Tab, чтобы закончить ввод. Tab: автоматическое заполнение файла, каталога или команды, которую вы вводите. Например, если у вас есть файл с длинным именем really_long_file_name в /home/alex/ и это единственное имя файла, начинающееся с r в этом каталоге, вы можете ввести /home/alex/r, нажать Tab, и bash автоматически заполнит /home/alex/really_long_file_name для вас. Если у вас есть несколько файлов или каталогов, начинающихся с r, bash проинформирует вас о доступных вариантах. Вы можете начать вводить один из них и нажать Tab, чтобы продолжить. Работа с историей команд Вы можете быстро просмотреть свои недавние команды, которые хранятся в файле истории bash вашей учетной записи: Ctrl + P или стрелка вверх: переход к предыдущей команде в истории команд. Нажмите ярлык несколько раз, чтобы вернуться к истории. Ctrl + N или стрелка вниз: переход к следующей команде в истории команд. Нажмите ярлык несколько раз, чтобы перейти вперед по истории. Alt + R: отменить любые изменения команды, извлеченной из истории, если вы ее редактировали. В Bash также есть специальный режим поиска, который вы можете использовать для поиска ранее выполненных команд: Ctrl + R: вспомнить последнюю команду, соответствующую указанным вами символам. Нажмите это сочетание и начните вводить символы для поиска команды в истории bash. Ctrl + O: запустите найденную команду с помощью Ctrl + R. Ctrl + G: выйти из режима поиска в истории без выполнения команды.
img
Атака MITM обычно выполняется во внутренней корпоративной сети. Злоумышленник использует этот тип атаки с целью перехвата конфиденциальной информации, которая передается между устройствами. Как вы понимаете, «человек посередине» (Man-in-the-middle) — это просто указание на то, где находится злоумышленник. Он располагается между устройством (устройствами) жертвы и получателем. Машина злоумышленника используется для перехвата всех сообщений между жертвой получателем. Большинство пользователей не знают о незащищенных сетевых протоколах, которые используются для передачи их сообщений от источника к получателю. Эти незащищенные протоколы передают сообщения в виде обычного текста, позволяя злоумышленнику перехватить и просмотреть фактические данные. Чтобы лучше понять, как работает MITM-атака, давайте посмотрим на следующий рисунок: Как показано на предыдущем рисунке, если PC1 захочет отправить какие-либо данные через Интернет, они отправляются на шлюз по умолчанию, которым является R1. Кроме того, для всех коммуникаций, которые происходят в локальной сети, устройства пересылают сообщения, используя MAC-адрес назначения, найденный в кадре, а не IP-адрес назначения. IP-адрес назначения важен только тогда, когда сообщение должно быть переадресовано за пределы локальной сети, например, в другую подсеть или удаленную сеть. Следовательно, когда PC1 захочет отправить сообщение через Интернет, он пересылает сообщение на MAC-адрес назначения, известный как BBBB.BBBB.BBBB, который принадлежит R1. Когда R1 должен пересылать какие-либо сообщения (пакеты) на PC1, он будет использовать MAC-адрес назначения AAAA.AAAA.AAAA. Таким образом, изначально сообщения на машину злоумышленника не отправляются. Злоумышленник может использовать уязвимость в протоколе разрешения адресов (Address Resolution Protocol - ARP), чтобы гарантировать, что все сообщения, которыми обмениваются между PC1 и R1, отправляются через его машину, как показано на следующем рисунке: Протокол ARP работает между уровнем 2 (канальный уровень) и уровнем 3 (уровень Интернета) стека протоколов TCP/IP. Он предназначен для преобразования IP-адреса в MAC-адрес потому, что коммутаторы не могут считывать адресацию уровня 3, например IP-адресацию внутри пакета. Коммутаторы могут только читать MAC-адреса и пересылать кадры на основе MAC-адреса назначения, найденного в заголовке кадра уровня 2. По этой причине ARP необходим в любой сети. Когда устройство, такое как PC1, не знает MAC-адрес целевого хоста, такого как R1, оно будет отправлять ARP-запрос в сеть, спрашивая, у кого есть MAC-адрес для конкретного пункта назначения, как показано на следующем рисунке: Запрос ARP отправляется на все устройства. Только устройство, имеющее IP-адрес назначения, ответит ARP-ответом, содержащим его MAC-адрес, как показано на следующем рисунке: Затем MAC-адрес временно сохраняется в кэше ARP исходного устройства, PC1. Исходное устройство затем вставляет MAC-адрес назначения в заголовок кадра уровня 2 перед размещением сообщения в сети. Коммутатор, который получает сообщение от PC1, проверяет MAC-адрес назначения, найденный в заголовке уровня 2, и пересылает сообщение на хост назначения. Злоумышленник может обманом заставить PC1 поверить в то, что он — это R1, а также заставить R1 думать, что он — это PC1. Злоумышленник может притвориться PC1 для R1 и наоборот. С технической точки зрения злоумышленник выдает себя за другую машину в сети — это называется подменой MAC-адресов. Кроме того, злоумышленник отправит безвозмездное сообщение ARP, содержащее ложное сопоставление IP-адресов и MAC-адресов. Каждое сообщение создается специально для PC1 и R1. Безвозмездное сообщение ARP — это ответ, который не был инициирован запросом ARP. Другими словами, это когда одно устройство отправляет обновление ARP без запроса. Это позволяет злоумышленнику выполнять атаку с подменой ARP и отправлять ложные сообщения ARP устройствам, заставляя их вставлять неверные сопоставления IP-адресов в MAC-адреса в их кэш ARP. Это известная уязвимость, обнаруженная в ARP и TCP/IP. На следующем рисунке показано, как злоумышленник отправляет безвозмездное сообщения ARP на PC1 и R1: Это приведет к тому, что весь трафик между PC1 и R1 будет отправлен на атакующую машину, что приведет к атаке MITM. На следующем скриншоте показан пример инструмента тестирования на проникновение, известного как arpspoof, который используется для отправки бесплатных сообщений ARP на хост-устройства в сети для создания атак MITM: Как показано на предыдущем скриншоте, инструмент постоянно заполняет компьютер жертвы (10.10.10.11) и шлюз по умолчанию (10.10.10.1) ложными сведениями о сопоставлении IP-адресов с MAC-адресами. На следующем рисунке показан захват Wireshark, отображающий ложные сообщения ARP, отправляемые по сети: Обратите внимание, как Wireshark выделил сообщения желтым цветом как подозрительные для изучения. Существует множество функций безопасности уровня 2, которые уже предварительно загружены в коммутаторы Cisco IOS, и все они могут быть реализованы специалистом по безопасности. Вот некоторые из этих функций безопасности: Port security: Port security используется для фильтрации неавторизованных MAC-адресов от входа в интерфейс коммутатора. Dynamic ARP Inspection (DAI): DAI проверяет информацию об адресе IP-to-MAC, найденную в пакете, поступающем в коммутатор. Если будет найдено поддельное сообщение, коммутатор отклонит его, чтобы защитить сеть уровня 2. IP Source Guard: это еще одна функция безопасности, которая позволяет устройствам Cisco разрешать в сети только IP-адреса доверенных источников, предотвращая атаки с подменой IP-адресов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59