По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Создание разделов диска позволяет разделить жесткий диск на несколько разделов, которые действуют независимо. В Linux пользователи должны структурировать устройства хранения (USB и жесткие диски) перед их использованием. Разбиение на разделы также полезно, когда вы устанавливаете несколько операционных систем на одном компьютере. В этом пошаговом руководстве вы узнаете, как создать раздел с помощью команды Linux parted или fdisk. Вариант 1: разбить диск на разделы с помощью команды parted Выполните следующие действия, чтобы разбить диск в Linux с помощью команды parted. Шаг 1. Список разделов Перед созданием раздела составьте список доступных запоминающих устройств и разделов. Это действие помогает определить устройство хранения, которое вы хотите разбить на разделы. Выполните следующую команду с sudo, чтобы вывести список устройств хранения и разделов: sudo parted -l Терминал распечатывает доступные устройства хранения с информацией о: Model - Модель запоминающего устройства. Disk - Имя и размер диска. Sector size - логический и физический размер памяти. Не путать с доступным дисковым пространством. Partition Table - тип таблицы разделов (msdos, gpt, aix, amiga, bsd, dvh, mac, pc98, sun и loop). Disk Flags - разделы с информацией о размере, типе, файловой системе и флагах. Типы разделов могут быть: Primary (Основной) - содержит файлы операционной системы. Можно создать только четыре основных раздела. Extended (Расширенный) - особый тип раздела, в котором можно создать более четырех основных разделов. Logical (Логический) - Раздел, созданный внутри расширенного раздела. В нашем примере есть два устройства хранения - /dev/sda и /dev/sdb Примечание. Первый диск хранения (dev/sda или dev/vda) содержит операционную систему. Создание раздела на этом диске может сделать вашу систему не загружаемой. Создавайте разделы только на дополнительных дисках (dev/sdb, dev/sdc, dev/vdb или dev/vdc). Шаг 2: Откройте диск для хранения Откройте диск хранения, который вы собираетесь разделить, выполнив следующую команду: sudo parted /dev/sdb Всегда указывайте запоминающее устройство. Если вы не укажете имя диска, он будет выбран случайным образом. Чтобы сменить диск на dev/sdb, выполните: select /dev/sdb Шаг 3: Создайте таблицу разделов Прежде чем разбивать диск, создайте таблицу разделов. Таблица разделов расположена в начале жесткого диска и хранит данные о размере и расположении каждого раздела. Типы таблиц разделов: aix, amiga, bsd, dvh, gpt, mac, ms-dos, pc98, sun и loop. Чтобы создать таблицу разделов, введите следующее: mklabel [partition_table_type] Например, чтобы создать таблицу разделов gpt, выполните следующую команду: mklabel gpt Введите Yes, чтобы выполнить: Примечание. Два наиболее часто используемых типа таблиц разделов - это gpt и msdos. msdos поддерживает до шестнадцати разделов и форматирует до 16 ТБ, а gpt форматирует до 9,4 ЗБ и поддерживает до 128 разделов. Шаг 4: проверьте таблицу Запустите команду print, чтобы просмотреть таблицу разделов. На выходе отображается информация об устройстве хранения: Примечание. Запустите команду help mkpart, чтобы получить дополнительную справку о том, как создать новый раздел. Шаг 5: Создайте раздел Давайте создадим новый раздел размером 1854 Мбайт, используя файловую систему ext4. Назначенное начало диска должно быть 1 МБ, а конец диска - 1855 МБ. Чтобы создать новый раздел, введите следующее: mkpart primary ext4 1MB 1855MB После этого запустите команду print, чтобы просмотреть информацию о вновь созданном разделе. Информация отображается в разделе Disk Flags: В таблице разделов gpt, тип раздела - это обязательное имя раздела. В нашем примере primary - это имя раздела, а не тип раздела. Чтобы сохранить свои действия и выйти, введите команду quit. Изменения сохраняются автоматически с помощью этой команды. Примечание. Сообщение «You may need to update /etc/fstab file» сигнализирует о том, что раздел может быть смонтирован автоматически во время загрузки. Вариант 2: разбить диск на разделы с помощью команды fdisk Выполните следующие действия, чтобы разбить диск в Linux с помощью команды fdisk. Шаг 1. Список существующих разделов Выполните следующую команду, чтобы вывести список всех существующих разделов: sudo fdisk -l Вывод содержит информацию о дисках и разделах хранилища: Шаг 2: Выберите диск для хранения Выберите диск для хранения, на котором вы хотите создать разделы, выполнив следующую команду: sudo fdisk /dev/sdb Диск /dev/sdbstorage открыт: Шаг 3: Создайте новый раздел Запустите команду n, чтобы создать новый раздел. Выберите номер раздела, набрав номер по умолчанию (2). После этого вас попросят указать начальный и конечный сектор вашего жесткого диска. Лучше всего ввести в этом разделе номер по умолчанию (3622912). Последний запрос связан с размером раздела. Вы можете выбрать несколько секторов или установить размер в мегабайтах или гигабайтах. Введите + 2 GB, чтобы установить размер раздела 2 ГБ. Появится сообщение, подтверждающее создание раздела. Шаг 4: запись на диск Система создала раздел, но изменения не записываются на диск. 1. Чтобы записать изменения на диск, выполните команду w: 2. Убедитесь, что раздел создан, выполнив следующую команду: sudo fdisk -l Как видите, раздел /dev/sdb2 создан. Отформатируйте раздел После создания раздела с помощью команды parted или fdisk отформатируйте его перед использованием. Отформатируйте раздел, выполнив следующую команду: sudo mkfs -t ext4 /dev/sdb1 Смонтировать раздел Чтобы начать взаимодействие с диском, создайте точку монтирования (mount point) и смонтируйте к ней раздел. 1. Создайте точку монтирования, выполнив следующую команду: sudo mkdir -p /mt/sdb1 2. После этого смонтируйте раздел, введя: sudo mount -t auto /dev/sbd1 /mt/sdb1 Терминал не распечатывает вывод, если команды выполнены успешно. 3. Убедитесь, что раздел смонтирован, с помощью команды df hT:
img
Проблемы с производительностью виртуальной машины на ESX/ESXi могут быть вызваны по различным причинам, например, ограничения в работе CPU, излишний объём памяти, задержкой в работе хранилищ или сети. Если одна или более из ваших виртуальных машин показывает высокое время ответа, то проверьте каждую из возможных причин, чтобы выявить слабое место системы. Неисправности Сервисы на гостевых виртуальных машинах работают медленно Приложения на гостевых виртуальных машинах отвечают с задержкой Гостевая виртуальная машина работает медленно или не отвечает Решение Каждый нижестоящий шаг содержит инструкции и ссылки на соответствующие документы. Шаги выстроены в наиболее удобном порядке для выявления и решения проблемы. Такая последовательность также обеспечивает наименьшую потерю данных. Замечание: после завершения каждого шага отмечайте сохраниться ли проблема с производительностью. Не пропускайте шаги и выполняйте их в указанном порядке. Статья включает в себя 4 основных части: Ограничения в работе CPU Излишний объём памяти Задержка в работе хранилища Сетевые задержки Ограничения в работе CPU Чтобы определить являются ли ограничения в работе CPU причиной низкой производительности: Введите команду esxtop, чтобы проверить перегружен ли ESXi/ESX server. Изучите load average в первой строке вывода команд. Средняя загрузка на уровне 1.00 означает, что физические процессоры (CPUs) машины с ESXi/ESX Server используются полностью, средняя загрузка 0.5 означает использование лишь половины ресурсов. Средняя загрузка на уровне 2.00 означает, что система перегружена. Изучите поле %READY, чтобы узнать долю времени, в течении которого виртуальная машина была готова, но не могла быть запланирована для запуска на физическом процессоре. При нормальных условиях эксплуатации это значение должно оставаться в пределах 5%. Если время готовности на виртуальных машинах с низкой производительностью слишком высокое, то необходимо проверить ограничения в работе процессора - убедитесь, что виртуальная машина не ограничена установленным лимитом процессора; Проверьте не ограничена ли виртуальная машина доступным объёмом ресурсов. Если средняя загрузка слишком высока и время, в течении которого машина готова к работе, не зависит от ограничений в работе процессора, то следует отрегулировать загрузку CPU хостa. Чтобы отрегулировать загрузку CPU хоста нужно: Увеличить количество физических CPU хоста Или уменьшить количество выделенных хосту виртуальных CPU. Чтобы уменьшить количество выделенных хосту виртуальных CPU нужно уменьшить общее количество CPU, выделенных всем запущенным виртуальным машинам на ESX хосте. Или уменьшить количество запущенных виртуальных машин Если Вы используете ESX 3.5, проверьте является ли проблемой совместное использование IRQ. Перегрузка памяти Чтобы определить является ли причиной низкой производительности перегрузка памяти необходимо: Ввести команду esxtop и установить перегружена ли память ESXi/ESX server. Изучите MEM overcommit avg в первой строке вывода команд. Это значение отражает соотношение требуемого объёма памяти к объёму доступной памяти, минус 1. Пример Если виртуальной машине требуется 4 ГБ ОЗУ и хост имеет 4 ГБ ОЗУ, то соотношение равно 1:1. После вычитания 1 (из 1:1) поле MEM overcommit avg выдаст значение 0. Память не перегружена и нет необходимости в дополнительном объёме. Если виртуальной машине требуется 6 ГБ ОЗУ и хост имеет 4 ГБ ОЗУ, то соотношение равно 1.5:1. После вычитания 1 (из 1:1) поле MEM overcommit avg выдаст значение 0. Память перегружена на 50% и необходимо на 50% больше ОЗУ, чем доступно. Если память перегружена, то следует отрегулировать количество памяти хоста. Для этого необходимо: Увеличить количество физической ОЗУ хоста Или уменьшить количество памяти, выделяемое виртуальным машинам. Для уменьшения объёма выделенной ОЗУ нужно уменьшить общее количество ОЗУ, выделенной всем виртуальным машинам хоста Или уменьшить общее количество виртуальных машин хоста. Определить состояние виртуальных машин: ballooning или swapping Для определения состояния: Запустите esxtop Введите m для памяти Введите f для полей Выберите букву J для Memory Ballooning Statistics (MCTL) Посмотрите на значение MCTLSZ. MCTLSZ (MB) отображает количество физической памяти гостя, переданной balloon driver. Введите f для поля Выберите букву для Memory Swap Statistics (SWAP STATS) Посмотрите на значение SWCUR. SWCUR (MB) отражает текущую загрузку свопа Для решения этой проблемы убедитесь, что ballooning или swapping не вызваны неправильно заданным объёмом памяти. Если объём памяти задан неверно, то его следует переназначить Задержки в работе хранилища Чтобы определить являются ли задержки в работе хранилища причиной низкой производительности: Проверьте связаны ли проблемы с локальным хранилищем. Перенесите виртуальные машины в другое хранилище. Уменьшите количество виртуальных машин на LUN. Поищите похожие записи на Windows гостей: The device, DeviceScsiPort0, did not respond within the timeout period Используя esxtop найдите высокое время задержки DAVG. Определите максимальную пропускную способность ввода/вывода с помощью команды iometer. Сравните результаты iometer, полученные на VM, с результатами физической машины с этим же хранилищем. Проверьте наличие конфликтов с резервированием SCSI. Если вы используете iSCSI хранилище и Jumbo фреймы, то следует проверить правильность конфигурации. При использовании iSCSI хранилища и многоканального iSCSI Software Initiator убедитесь, что всё правильно сконфигурировано. Если вы обнаружили проблемы, связанные с хранилищем: Убедитесь в том, что ваша аппаратура и HBA карты сертифицированы для работы с ESX/ESXi. Проверьте обновления вашего физического сервера. Проверьте обновления прошивки вашего HBA. ESX верно определяет режим и политику пути для вашего SATP Storage вашего типа и PSP Path Selection. Сетвые задержки Производительность сети тесно связана с производительностью CPU. Поэтому сначала необходимо проверить работу CPU и после этого переходить к поиску проблем в сети. Для определения проблем с производительностью сети: Проверьте максимальную пропускную способность от виртуальной машины с помощью Iperf. Замечание: VMware не поддерживает и не рекомендует какую-либо конкретную стороннюю программу. Во время использования Iperf измените размер окна TCP до 64 K. Это также влияет на производительность. Для изменения размера окна TCP: На стороне сервера введите: iperf -s На стороне клиента введите: iperf.exe -c sqlsed -P 1 -i 1 -p 5001 -w 64K -f m -t 10 900M Запустите Iperf на машине вне хоста ESXi/ESX. Сравните полученные результаты с ожидаемыми результатами, с учётом физической среды. Запустите Iperf на другой машине вне хоста ESXi/ESX, VLAN и физический свитч должны оставаться прежними. Если производительность в порядке, а проблема появляется только на машине, расположенной в другом месте, то проблему нужно искать в вашей сетевой среде. Запустите Iperf между двумя виртуальными машинами на общем сервере/portgroup/vswitch. Если результат положительный, то можно исключить проблемы с памятью, CPU и хранилищем. Если вы обнаружили «бутылочное горлышко» вашей сети, то: Если вы используете iSCSI хранилище и Jumbo фреймы, то следует проверить правильность конфигурации. Если вы используете Network I/O Control, то необходимо проверить правильность конфигурации общих ресурсов и ограничений для вашего траффика. Убедитесь в правильности работы трафик шейпинга.
img
Основной причиной серьезных атак является предоставление доступа к таким активам, которые не должен быть открыты для всех. Одной из цифровых инфраструктур, где часто встречаются проблемы с безопасностью является Kubernetes. "Облачное" программное обеспечение, развернутое на устаревших центрах обработки данных, требует от конечных пользователей и администраторов своевременного обнаружения и устранения некорректных настроек, в виде предоставление привилегий высокого уровня программам и людям, которым они вовсе не нужны. IBM Study пришла к выводу, что в 95% случаям нарушения безопасности, которые они исследовали, содействовали или были вызваны человеческими ошибками, в том числе и разработчиками программного обеспечения. Остальные же были, главным образом, из-за технической оплошности. В последующих исследованиях, касающихся нарушений безопасности, также приводились аналогичные выводы с цифровыми инструментами всех видов. В Kubernetes привилегии часто предоставляются с помощью ролевых средств управления доступом. Он может ошибочно разрешить административные разрешения для всего кластера, даже если это не требуется. Тот факт, что Kubernetes может включать крупномасштабные и автоматизированные разрешения на инфраструктуру, также создает почву для атаки на контейнеры, приложения и злоупотребления разрешениями. Проблемы также включают множество встроенных функций безопасности, но не все они включены в инструменте по умолчанию. Поскольку Kubernetes способствует быстрому развертыванию и разработке приложений, управление может помешать быстрому развертыванию инфраструктуры. После окончательного развертывания приложений, делая их доступными для пользователей, неверно сделанные конфигурации безопасности увеличивают возможные риски. Стратегии безопасности для облачных инструментов Для защиты облачных средств с помощью контейнеров необходима другая стратегия, отличная от стратегии, используемой для устаревших инфраструктурных систем. С ростом внедрения облачных инструментов существуют два подхода к обеспечению безопасности, главным образом, Kubernetes-ориентированный и контейнерный. В ориентированном на контейнеры подходе к обеспечению безопасности основное внимание уделяется обеспечению безопасности среды выполнения контейнеров и образов. Для управления связью между контейнерами используются такие методы управления, как shim специально написанный интерфейс и встроенные прокси-серверы. С другой стороны, подход, ориентированный на Kubernetes, использует встроенную масштабируемость и гибкость Kubernetes. Она работает на уровнях Kubernetes и продвигает свои принудительные политики. Следовательно, вы должны позволить ему контролировать как вашу инфраструктуру, так и безопасность. Что делает встроенное средство безопасности Kubernetes? Характеристики, которые делают средство безопасности Kubernetes-ориентированным или Kubernetes-native, представляют собой сочетание того, что они выполняют и как. Во-первых, необходимо интегрировать инфраструктуру и рабочие нагрузки с API Kubernetes и оценить уязвимости. Убедитесь, что функции безопасности основаны на ресурсах Kubernetes, включая службы, развертывания, модули и пространства имен. Также необходимо использовать встроенные функции безопасности Kubernetes. Такая глубокая интеграция охватывает все аспекты среды Kubernetes, включая управление уязвимостями, управление конфигурацией, сегментацию сети, реагирование на инциденты, соответствие нормативным требованиям и обнаружение угроз. Почему инструменты, ориентированные на Kubernetes, превосходят контейнеры? Платформы безопасности, ориентированные на Kubernetes, считаются превосходными, если вы работаете с контейнерами. Причину можно сформулировать тремя способами. Во-первых, они обеспечивают лучшую защиту с помощью богатого понимания принципов работы контейнеров и самого Kubernetes. Они также используют декларативные данные для контекстуализации рисков и информирования о них. Во-вторых, платформы безопасности Kubernetes обеспечивают повышенную операционную эффективность, что позволяет быстро обнаруживать угрозы, а также оценивать риски на приоритетном уровне. Он позволяет всем членам вашей команды находиться на одной странице для устранения неполадок и более быстрой работы. В-третьих, ваш операционный риск может быть снижен с помощью встроенных средств управления Kubernetes, облегчающих масштабируемость и адаптируемость. Кроме того, между оркестратором и внешними элементами управления не может возникнуть никакого конфликта. Таким образом, собственные возможности Kubernetes в области безопасности могут лучше защитить контейнерные экосистемы. Если вашим специалистам по безопасности инфраструктуры и DevOps удается использовать весь потенциал этих инструментов, вы можете продолжать обнаруживать угрозы и останавливать их, когда у вас есть время.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59