По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В небольших сетевых устройствах с одним сетевым процессом (ASIC или NPU) переместить пакет из входной очереди в выходную просто. Оба интерфейса ввода и вывода используют общий пул памяти пакетов, поэтому указатель на пакет может быть перемещен из одной очереди в другую. Для достижения большего количества портов и более крупных устройств - особенно устройств шасси - должна быть внутренняя шина или матрица, которая соединяет механизмы обработки входных и выходных пакетов. Одним из распространенных типов структуры, используемой для соединения механизмов обработки пакетов в сетевом устройстве, является структура матрицы; Рисунок ниже иллюстрирует это. Размер и структура полотна матрицы зависят от количества подключенных портов. Если в коммутаторе больше портов, чем возможно для подключения через одну матрицу кросс-панелей, то коммутатор будет использовать несколько структур кросс-панелей. Распространенной топологией для такого типа полотна является многоступенчатая закрытая структура, соединяющая входную и выходную полотна матрицы вместе. Вы можете думать об этом как о матрице из матриц. Для работы матрицы требуется чувство времени (или, скорее, фиксированный временной интервал) и планировщик. В каждый интервал времени один порт вывода (отправки) соединяется с одним портом ввода (приема), так что в течение этого периода времени отправитель может передать пакет, кадр или набор пакетов получателю. Планировщик "соединяет" правильные точки пересечения на матрице, чтобы передачи происходили в нужный период времени. Например: Line card 1 (LC1) хочет отправить пакет в LC3. LC3 хочет отправить пакет в LC5. В течение следующего временного цикла планировщик может подключить строку A к столбцу 1 ("установить" соединение в A3) и подключить строку C к столбцу 5 ("установить" соединение в C5), чтобы между этими парами был установлен канал связи. Пересечения и конфликты Что произойдет, если два передатчика захотят отправить пакет одному получателю? Например, если в течение одного периода времени и LC1, и LC2 хотят отправить пакет в LC9 через полотно перекрестной матрицы? Это называется конфликтом, и это ситуация, которую должен обрабатывать планировщик структуры. Какому из двух входных портов должно быть разрешено отправлять свой трафик на выходной порт? А где же тем временем должны находится очереди входящего трафика? Один из вариантов - хранить пакеты во входной очереди; коммутаторы, использующие эту технику, называются коммутаторами с очередью ввода (input-queued switches). Такие коммутаторы испытывают head-of-line (HOL). Блокировка HOL - это то, что происходит, когда пакет в начале линии, ожидающий пересылки через структуру, блокирует другие пакеты, стоящие в очереди за ним. Другой вариант - использовать в коммутаторе несколько виртуальных очередей вывода (virtual output queues- VOQ) для каждого порта ввода. VOQ дают матрице перекрестной сети несколько мест для хранения входящих пакетов, пока они ожидают доставки на свои выходные порты. Во многих конструкциях коммутаторов один VOQ существует на каждый выходной порт, для которого предназначен входной трафик. Следовательно, входной порт может иметь несколько пакетов в очереди в нескольких разных VOQ, предполагая, что несколько разных выходных портов. Каждый из этих VOQ может обслуживаться в течение одного тактового цикла. Это означает, что блокировка HOL устраняется, потому что несколько разных пакетов из одной входной очереди могут проходить через матрицу кроссбара одновременно. Для порта ввода существует не одна очередь, а несколько разных очередей. Даже с VOQ остается потенциальная возможность разногласий по структуре перекрестной сети. Наиболее распространенный пример - это когда два или более входящих пакета должны покинуть коммутатор через один и тот же выходной порт в одно и то же время, или, точнее, в одном тактовом цикле. Выходной порт может отправлять только один пакет за такт. Определение того, какая входная очередь будет доставлять трафик на выходной порт первой, - это алгоритм, определяемый производителем коммутатора для максимального использования аппаратного обеспечения. iSLIP-это один из алгоритмов планирования, используемых коммутаторами для решения этой проблемы. Обзор алгоритма iSLIP Алгоритм iSLIP разрешает конфликты межсетевых экранов, распределяя трафик таким образом, чтобы сетевое устройство достигало неблокирующей пропускной способности. Для понимания этого полезно внимательно изучить iSLIP в его простейшей форме, проанализировав, что происходит, когда алгоритм iSLIP выполняется один раз. Во время выполнения iSLIP происходят три важных события: Запрос. Все входные точки (вход) на перекрестной матрице с поставленным в очередь трафиком спрашивают свои выходные точки (выход), могут ли они отправить. Предоставление (грант). Каждая точка вывода, получившая запрос, должна определять, какая точка ввода будет разрешена для отправки. Если есть один запрос, то грант предоставляется без дальнейшего обсуждения. Однако при наличии нескольких запросов точка вывода должна определять, какая точка ввода может отправлять. Это делается через циклического перебора, где одному запросу предоставляется грант, последующему запросу предоставляется грант во время следующего выполнения iSLIP, и так далее по кругу. Когда было принято решение об этом конкретном выполнении iSLIP, каждая точка вывода отправляет свое сообщение о предоставлении, эффективно сигнализируя о разрешении на отправку, в соответствующую точку ввода. Принятие. Входная точка рассматривает сообщения о предоставлении гранта, полученные ею от выходных точек, выбирая грант циклическим способом. После выбора входной сигнал уведомляет выходной сигнал о том, что грант принят. Если и только, если выходная точка уведомлена о том, что грант был принят, выходная точка перейдет к следующему запросу. Если сообщение accept не получено, то точка вывода попытается обслужить предыдущий запрос во время следующего выполнения iSLIP. Понимание процессов запроса, предоставления и принятия дает нам представление о том, как пакеты могут быть доставлены одновременно через матрицу кроссбара без конфликтов. Однако, если вы поразмыслите над сложным набором входов, VOQ и выходов, вы можете понять, что один запуск iSLIP не планирует доставки столько пакетов, сколько могло бы быть после одного выполнения. Понимание процессов запроса, предоставления и принятия дает нам представление о том, как пакеты могут быть доставлены одновременно через матрицу кроссбара без конфликтов. Однако, если вы поразмыслите над сложным набором входов, VOQ и выходов, вы поймете, что один запуск iSLIP не планирует доставки столько пакетов, сколько могло бы быть после одного выполнения. Конечно, некоторые входы были предоставлены выходам, и некоторые пакеты могут быть переадресованы, но возможно, что некоторые выходы никогда не были согласованы с ожидающим входом. Другими словами, если вы ограничите iSLIP одним исполнением за такт, мы оставим доступную выходную полосу пропускания неиспользуемой. Поэтому обычной практикой является запуск iSLIP через несколько итераций. В результате количество совпадений ввода-вывода максимально. За один раз через матрицу кроссбара может быть отправлено больше пакетов. Сколько раз нужно запускать iSLIP, чтобы максимально увеличить количество пакетов, которые можно коммутировать через матрицу кроссбара за такт? Исследования показывают, что для шаблонов трафика, преобладающих в большинстве сетей, запуск iSLIP четыре раза лучше всего сопоставляет входные и выходные данные в матрице. Выполнение iSLIP более четырех раз не приводит к значительному увеличению количества совпадений. Другими словами, запуск iSLIP пять, шесть или десять раз в большинстве сетевых сред ничего не даст. Выход за рамки iSLIP Это обсуждение до сих пор предполагало, что движение, протекающее через матрицу, имеет одинаковое значение. Однако в современных центрах обработки данных одни классы трафика имеют приоритет над другими. Например, фреймы хранилища Fibre Channel over Ethernet (FCoE) должны проходить через матрицу без потерь, в то время как сеанс TCP, попадающий в класс QoS, этого не делает. Обрабатывает ли iSLIP трафик с разными приоритетами, отдавая одни запросы раньше других? Да, но в модифицированной форме алгоритма, который мы рассмотрели. Варианты iSLIP включают Приоритетный, Пороговый и Взвешенный iSLIP. Помимо iSLIP, который здесь используется просто как удобный пример управления конфликтами, поставщики будут писать свои собственные алгоритмы, соответствующие аппаратным возможностям своей собственной коммутационной матрицы. Например, в этом разделе рассматривается только матрица перекрестных линий с входящей очередью, но многие структуры перекрестных линий предлагают также организацию очереди вывода на выходной стороне матрицы.
img
В нашей базе знаний достаточно много статей касаемо установки и настройки FreePBX, поэтому вы наверняка неоднократно натыкались на скриншоты Dashboard в FreePBX – окна, содержащего в себе сводку по всем сервисам, службам и «железным» характеристикам сервера АТС – в сегодняшней статье мы расскажем как установить похожий дэшборд абсолютно на любой сервер – в нашем примере мы будем его ставить на CentOS 6. Установка Для начала обновим все пакеты с помощью командыyum update, а затем установим Apache, PHP и git пакеты: yum -y install httpd git php php-json php-xml php-common Далее включим и запустим сервис httpd командами: systemctl start httpd systemctl enable httpd Следующим шагом необходимо скачать сам дэшборд с помощью git, но для этого необходимо сначала сменить рабочую директорию на /var/www/html с помощью команды cd /var/www/html. После смены директории вводим команду для скачивания - git clone https://github.com/afaqurk/linux-dash.git - в общем и целом, почти всё готово для запуска. Запуск Теперь перезагружаем сервис httpd с помощью команды service httpd restart и пробуем зайти по следующему адресу: http://адрес_вашего_сервера/linux-dash Если всё прошло успешно – у вас должен запуститься веб-интерфейс следующего вида, как на скриншоте ниже: Обратите внимание, что есть 5 вкладок: System Status - информация о загруженности оперативной памяти, CPU и так далее; Basic Info - общая информация о сервере; Network - информация о сетевых интерфейсах; Accounts - информация об аккаунтах пользователей; Apps - описание используемых приложений; Данное приложение находится в процессе постоянной доработки разработчиком, поэтому вы всегда можете обратиться к нему напрямую через GitHub.
img
Повышение нагрузки на серверы Linux может быть хорошей идеей, если вы хотите увидеть, насколько хорошо они работают, когда они загружены. В этой статье мы рассмотрим некоторые инструменты, которые помогут вам нагрузить сервер и оценить результаты. Для чего вам необходимо подвергать свою систему Linux нагрузке? Потому что иногда вам может потребоваться узнать, как система будет вести себя, когда она находится под большим давлением из-за большого количества запущенных процессов, интенсивного сетевого трафика, чрезмерного использования памяти и т. д. Этот вид тестирования позволяет убедиться, что система готова к использованию. Если вам нужно спрогнозировать, сколько времени потребуется приложениям для ответа и какие процессы могут выйти из строя или работать медленно под большой нагрузкой, проведение стресс-тестирования заранее является очень хорошей идеей. К счастью для тех, кому нужно знать, как система Linux отреагирует на нагрузку, есть несколько полезных методов, которые вы можете использовать, и есть инструменты, которые вы можете использовать, чтобы упростить этот процесс. В этой статье мы рассмотрим несколько вариантов. Создаем циклы своими руками Данный первый метод предполагает запуск некоторых циклов в командной строке и наблюдение за тем, как они влияют на систему. Этот метод нагружает ЦП, значительно увеличивая нагрузку. Результаты можно легко увидеть с помощью команды uptime или аналогичных команд. В приведенной ниже примере мы начинаем четыре бесконечных цикла. Вы можете увеличить количество циклов, добавляя цифры или используя выражение bash, например {1..6} вместо «1 2 3 4». for i in 1 2 3 4; do while : ; do : ; done & done В примере выше, команда, запускает четыре бесконечных цикла в фоновом режиме. $ for i in 1 2 3 4; do while : ; do : ; done & done [1] 205012 [2] 205013 [3] 205014 [4] 205015 В этом случае были запущены задания 1-4. Отображаются как номера заданий, так и идентификаторы процессов. Чтобы увидеть влияние на средние значения нагрузки, используйте команду, подобную показанной ниже. В этом случае команда uptime запускается каждые 30 секунд: $ while true; do uptime; sleep 30; done Если вы собираетесь периодически запускать подобные тесты, вы можете поместить команду цикла в скрипт: #!/bin/bash while true do uptime sleep 30 done В выходных данных вы можете увидеть, как средние значения нагрузки увеличиваются, а затем снова начинают снижаться после завершения циклов. Поскольку показанные нагрузки представляют собой средние значения за 1, 5 и 15 минут, потребуется некоторое время, чтобы значения вернулись к нормальным для системы значениям. Чтобы остановить циклы, выполните команду kill, подобную приведенной ниже - при условии, что номера заданий равны 1-4, как было показано ранее в этой статье. Если вы не уверены, используйте команду jobs, чтобы проверить ID. $ kill %1 %2 %3 %4 Специализированные инструменты для добавления нагрузки Другой способ создать системный стресс - это использовать инструмент, специально созданный для того, чтобы нагружать систему за вас. Один из них называется stress и может воздействовать на систему разными способами. Стресс-инструмент - это генератор рабочей нагрузки, который обеспечивает стресс-тесты ЦП, памяти и I/O. С параметром --cpu команда stress использует функцию извлечения квадратного корня, чтобы заставить ЦП усердно работать. Чем больше указано количество ЦП, тем быстрее будет нарастать нагрузка. Второй сценарий watch-it (watch-it-2) может использоваться для оценки влияния на использование системной памяти. Обратите внимание, что он использует команду free, чтобы увидеть эффект стресса. $ cat watch-it-2 #!/bin/bash while true do free sleep 30 done Начало и наблюдение за стрессом: $ stress --cpu 2 Чем больше ЦП указано в командной строке, тем быстрее будет нарастать нагрузка. Команда stress также может вызвать нагрузку на систему, добавив I/O и загрузку памяти с помощью параметров --io (input/output) и --vm (memory). В следующем примере выполняется команда для добавления нагрузки на память, а затем запускается сценарий watch-it-2: $ stress --vm 2 Другой вариант для стресса - использовать параметр --io, чтобы добавить в систему действия по вводу/выводу. В этом случае вы должны использовать такую команду: $ stress --io 4 После чего вы можете наблюдать за стрессовым I/O с помощью iotop. Обратите внимание, что iotop требует привилегий root. До После stress - это лишь один из множества инструментов для добавления нагрузки в систему.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59