По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В современной среде информационной безопасности преобладают криптоминирующие вредоносные программы, также известные как криптоджеккинг. В 2019 году 38% всех компаний в мире пострадали от такого вредоносного ПО. В этой статье мы подробно рассмотрим типологию крипто-вредоносных программ и обсудим пять самых крупных крипто-вредоносных атак. Кроме того, дадим несколько кратких рекомендаций о том, как защититься от таких программ. Типология крипто-вредоносных программ Крипто-вредоносные программы можно разделить на три категории: вредоносные ПО для крипто-майнинга; крипто-вымогатели; крипто-кражи. Вредоносные ПО для крипто-майнинга Вредоносное ПО для крипто-майнинга — это вредоносное ПО, которое заражает компьютер, чтобы использовать его вычислительную мощность для того, чтобы майнить криптовалюту без авторизации. После заражения компьютера этот тип вредоносных программ может оставаться незамеченным в течение долгого времени, поскольку он предназначен для работы без привлечения внимания. Одним из признаков, указывающих на заражение вредоносным ПО для шифрования, является медленная работа зараженного компьютера. В некоторых крайних случаях вредоносное ПО может полностью блокировать работу зараженного компьютера из-за полного истощения ресурсов этого ПК. Вредоносное ПО для крипто-майнинга может затронуть не только настольные компьютеры, но и ноутбуки, мобильные телефоны и устройства Интернета вещей (IoT). Чтобы проиллюстрировать работу подобного вредоносного ПО, мы кратко обсудим один конкретный тип такого вредоносного ПО, а именно WannaMine. Он использует зараженный компьютер, чтобы генерировать криптовалюту Monero. WannaMine использует хакерский инструмент EternalBlue. Первоначально его разработалоАгентство национальной безопасности США (NSA), но позже послужил основой для различных вредоносных приложений, включая печально известный WannaCry. Криптовалюта, генерируемая через WannaMine, добавляется в цифровой кошелек мошенников. По оценкам, более 500 миллионов пользователей Интернета добывают криптовалюты на своих вычислительных устройствах, не зная об этом. Крипто -вымогатели Крипто-вымогатель — это вредоносная программа для шифрования файлов, которые хранятся на зараженном компьютере, и просит пользователей этого компьютера заплатить выкуп за доступ к зашифрованным файлам. Выкуп, как правило, варьируется от 300 до 500 долларов США и должен быть оплачен в биткойнах или другой криптовалюте. Крипто-вымогатели могут нанести существенный урон мировой экономике. Например, предполагаемые убытки от крипто-вымогателей WannaCry составляют 4 миллиарда долларов США. Около 230 000 компьютеров по всему миру заразились этой программой, включая компьютеры больниц и телекоммуникационных компаний. За два месяца до появления WannaCry Microsoft выпустила исправление безопасности, которое защищало пользователей Microsoft Windows от WannaCry и других вредоносных программ, основанных на эксплойте EternalBlue. Однако, поскольку многие люди и организации не обновили свои операционные системы своевременно, WannaCry удалось заразить большое количество компьютеров. Как только WannaCry заражает компьютер, он шифрует файлы, хранящиеся на этом компьютере, и требует выкуп: от 300 до 600 долларов. Однако большинство жертв, которые заплатили запрошенный выкуп, не расшифровали свои файлы. Некоторые исследователи утверждают, что никому не удалось расшифровать файлы, которые зашифровала WannaCry. Крипто-кража Крипто-кража направлена на тайную кражу криптовалюты у пользователей зараженных компьютеров. Например, хакерская группа Lazarus из Северной Кореи использовала приложение для обмена сообщениями Telegram для распространения вредоносных программ, позволяющих злоумышленникам красть криптовалюты. Такое вредоносное ПО часто разрабатывают хакеры из Северной Кореи, поскольку криптовалюты позволяют северокорейцам уклоняться от экономических санкций, введенных рядом стран и международных организаций. Согласно отчету ООН от 2019 года, Северная Корея получила более 2 миллиардов долларов США в виде криптовалюты путем взлома криптовалютных бирж и других организаций. Топ 5 крипто-вредоносных атак: 1. Retadup Retadup, ПО для крипто-майнинга, должно быть первым в списке, потому что ему удалось заразить и создать ботнет из 850 000 компьютеров. Ботнет, который считался одним из крупнейших в мире, обнаружила и уничтожила французская полиция. 2. Smominru Программное обеспечение для крипто-вымогательства Smominru находится на втором месте, поскольку оно затронуло более 500 000 машин. 3. CryptoLocker Вредоносная программа CryptoLocker получает бронзовую медаль, поскольку она также затронула более 500 000 компьютеров. Однако ущерб, причиненный им, пока неясен. 4. Bayrob Group Вредоносное ПО для крипто-майнинга Bayrob Group, затронувшее более 400 000 компьютеров, занимает четвертое место. Стоит отметить, что два члена преступной группы были экстрадированы из Румынии в США и осуждены за киберпреступность и мошенничество. 5. WannaCry Пятое место занимает WannaCry, крипто-вымогатель, который более подробно обсуждался выше. Заражено 230 000 компьютеров. Как защититься от крипто-вредоносных программ Частные лица и организации, которые хотят защитить себя от крипто-вредоносных программ, должны повышать свою осведомленность в области информационной безопасности посредством образования и обучения. Это связано с тем, что крипто-вредоносные программы обычно распространяются, заманивая компьютерных пользователей открывать вредоносные вложения или нажимать на мошеннические веб-сайты. В дополнение к повышению осведомленности о крипто-вредоносных программах, необходимо регулярно устанавливать обновления программного обеспечения и исправления, чтобы предотвратить использование хакерами таких уязвимостей, как EternalBlue. И последнее, но не менее важное: крайне важно установить надежное решение для защиты от вредоносного ПО, которое выявляет и удаляет его безопасно, быстро и эффективно.
img
Public Key Infrastructure (PKI) - это набор различных технологий, которые используются для обеспечения аутентификации источника, целостности данных и конфиденциальности для пользователя в сети. PKI использует преимущества асимметричного шифрования и использует пары открытого и закрытого ключей для шифрования данных. В PKI открытый ключ обычно связан с цифровой подписью, чтобы добавить доверие и проверить сведения о владельце сертификата. Ниже приведен ключевой жизненный цикл в PKI: Генерация ключа: Этот процесс определяет шифр и размер ключа. Генерация сертификата: Этот процесс создает цифровой сертификат и назначает его человеку или устройству. Распространение: Процесс распространения отвечает за безопасное распространение ключа пользователю или устройству. Хранение: Этот процесс отвечает за безопасное хранение ключа, чтобы предотвратить любой несанкционированный доступ к нему. Отзыв: Сертификат или ключ могут быть отозваны, если они скомпрометированы субъектом угрозы. Срок действия: Каждый сертификат имеет срок службы. Каждый день мы посещаем различные веб-сайты, такие как социальные сети, стрим, новости, спорт, блоги и другие платформы. Однако задумывались ли вы когда-нибудь о проверке подлинности веб-сайтов, которые вы посещаете? Вы, наверное, думаете, что всему, что находится в Интернете, нельзя доверять. Хотя это отчасти правда, мы можем доверять только ограниченному числу веб-сайтов, например, доверять веб-сайту вашего банка. Главный вопрос заключается в том, как мы можем проверить подлинность веб-сайтов, которые мы посещаем? Именно здесь как PKI, так и цифровые сертификаты помогают установить доверие между хостом в Интернете и нашим компьютером. Центр сертификации PKI играет жизненно важную роль в Интернете, поскольку многим пользователям и устройствам требуется метод установления доверия в самой ненадежной сети в мире – Интернете. Понимание компонентов, которые помогают PKI обеспечить доверие, необходимую как пользователям, так и устройствам, имеет важное значение для любого специалиста по кибербезопасности. Вы можете рассматривать PKI как набор процедур, правил, аппаратного и программного обеспечения, а также людей, которые работают вместе для управления цифровыми сертификатами. Цифровой сертификат-это официальная форма идентификации объекта, которая проверяется доверенной стороной. Эти цифровые сертификаты выдаются доверенной стороной в сети или Интернете. Они известны как Центр сертификации (Certificate Authority - CA). В каждой стране существует государственное учреждение, которое обычно отвечает за проверку личности своих граждан и выдачу удостоверений личности, такой как паспорт. Этот паспорт будет содержать важную информацию о владельце и сроке действия, например, дату окончания срока действия. В сети и в Интернете центр сертификации выполняет похожую роль и функции. В Интернете есть множество поставщиков, которые являются доверенными центрами сертификации, которые позволяют вам приобретать цифровой сертификат для личного использования. Примеры доверенных центров сертификации включают GoDaddy, DigiCert, Let's Encrypt, Comodo, Cloudflare и многие другие. Важное примечание! Цифровой сертификат создается при объединении ключа и цифровой подписи. Сертификат будет содержать сведения о владельце сертификата, например, об организации. ЦС выдаст объекту цифровой сертификат только после того, как его личность будет проверена. После того, как ЦС создает цифровой сертификат, он сохраняется в базе данных сертификатов, которая используется для безопасного хранения всех утвержденных ЦС цифровых сертификатов. Важное примечание! По истечении срока действия цифрового сертификата он возвращается в ЦС, который затем помещается в список отзыва сертификатов (Certificate Revocation List - CRL), который поддерживается ЦС. Цифровой сертификат форматируется с использованием стандарта X.509, который содержит следующие сведения: Номер версии Серийный номер Идентификатор алгоритма подписи Название эмитента Срок годности Не раньше, чем Не после Имя субъекта Информация об открытом ключе субъекта Алгоритм открытого ключа Открытый ключ субъекта Уникальный идентификатор эмитента (необязательно) Уникальный идентификатор субъекта (необязательно) Расширения (необязательно) Алгоритм подписи сертификата Подпись сертификата Регистрирующий орган (RA) Следующий рисунок - это цифровой сертификат, который используется для проверки веб-сайта Cisco: Как показано на предыдущем рисунке, видно, что CA - это HydrantID SSH ICA G2, который выдает сертификат на www.cisco.com на срок действия с 20 сентября 2019 года по 20 сентября 2021 года. Как показано на следующем рисунке, цифровой сертификат содержит дополнительную информацию, которая хранится с использованием стандарта X.509: Далее давайте рассмотрим, как создается цифровая подпись и ее роль в PKI. Цифровая подпись При совершении деловых операций на документах требуется подпись, чтобы гарантировать, что сделка санкционирована соответствующим лицом. Такая же концепция требуется в сети, так что цифровая подпись отправляется вместе с сообщением на конечный хост. Затем узел назначения может использовать цифровую подпись для проверки подлинности сообщения. При использовании PKI используются следующие алгоритмы для создания и проверки цифровых подписей: DSA RSA Elliptic Curve Digital Signature Algorithm (ECDSA) Чтобы создать цифровую подпись, между Алисой (отправителем) и Сергеем Алексеевичем (получателем) происходит следующий процесс: 1) Алиса будет использовать алгоритм хеширования для создания хэша (дайджеста) сообщения: 2) Затем Алиса будет использовать свой закрытый ключ для шифрования хэша (дайджеста) сообщения: Цифровая подпись используется в качестве доказательства того, что Алиса подписала сообщение. Чтобы лучше понять, как используются цифровые подписи в реальной жизни, давайте представим, что в сети есть два пользователя. Алиса хочет отправить Сергею Алексеевичу сообщение. Алиса может использовать цифровую подпись с сообщением, чтобы заверить Сергея Алексеевича в том, что сообщение исходило именно от нее. Это шаги, которые Алиса будет использовать для обеспечения подлинности, целостности и неотрицания: Алиса создаст пару открытых и закрытых ключей для шифрования данных. Алиса даст Сергею Алексеевичу только открытый ключ. Таким образом, закрытый ключ хранится у Алисы. Алиса создаст сообщение для Сергея Алексеевича и создаст хэш (дайджест) сообщения. Затем Алиса будет использовать закрытый ключ для шифрования хэша (дайджеста) сообщения для создания цифровой подписи. Алиса отправит сообщение и цифровую подпись Сергею Алексеевичу. Сергей Алексеевич будет использовать открытый ключ Алисы для расшифровки цифровой подписи, чтобы получить хэш сообщения. Сергей Алексеевич также сгенерирует хэш сообщения и сравнит его с хэшем, полученным из цифровой подписи Алисы. Как только два значения хэша (дайджеста) совпадают, это просто означает, что сообщение подписано и отправлено Алисой. Цифровые подписи используются не только для проверки подлинности сообщений. Они также используются в следующих случаях: Цифровые подписи для цифровых сертификатов: это позволяет отправителю вставить цифровую подпись в цифровой сертификат. Цифровые подписи для подписи кода: это позволяет разработчику приложения вставить свою цифровую подпись в исходник приложения, чтобы помочь пользователям проверить подлинность программного обеспечения или приложения. На следующем рисунке показан пример приложения, содержащего цифровой сертификат: На следующем рисунке показана дополнительная проверка цифровой подписи подписавшего: Система доверия PKI Ранее мы узнали, что организация может получить цифровой сертификат от доверенного центра сертификации в Интернете. Однако во многих крупных организациях вы обычно найдете корневой ЦС и множество промежуточных ЦС. Корневой ЦС отвечает за создание первичного цифрового сертификата, который затем делегируется каждому подчиненному ЦС или промежуточному ЦС. Промежуточный ЦС будет использовать цифровой сертификат корневого сервера для создания новых цифровых сертификатов для конечных устройств, таких как внутренние серверы. На следующем рисунке показана иерархия корневого и промежуточного ЦС: Использование этого типа иерархической структуры снимает нагрузку с корневого центра сертификации по управлению всеми цифровыми сертификатами в организации. Некоторые из этих обязанностей делегированы промежуточным серверам ЦС в сети. Представьте, что в вашем головном офисе вы развернули корневой ЦС, а в каждом удаленном филиале развернули промежуточные ЦС. Следовательно, каждый промежуточный ЦС отвечает за управление сертификатами своего собственного домена или филиала. Это также снижает риски взлома корневого ЦС злоумышленником, так что в случае взлома промежуточного ЦС корневой ЦС может быть отключен от сети, не затрагивая другие конечные устройства или промежуточные ЦС. В небольших сетях можно развернуть один корневой ЦС для предоставления цифровых сертификатов каждому конечному устройству, как показано на следующем рисунке: Как показано на предыдущем рисунке, одним ЦС легко управлять. Однако по мере роста сети наличие единственного центра сертификации в сети не позволит легко масштабироваться, поэтому необходимо использовать иерархическую структуру с корневым центром сертификации и промежуточными (подчиненными) центрами сертификации.
img
Потренируйтесь в ответах на популярные вопросы по SQL на собеседованиях. В данной статье приведен список типовых вопросов по SQL, с которыми можно столкнуться на настоящем собеседовании, и даны ответы. Чтобы получить максимум из прочитанного, постарайтесь сначала отвечать на вопросы самостоятельно. Удачи! 1. Что такое SQL? SQL расшифровывается как Structured Query Language – язык структурированных запросов. Это язык программирования для взаимодействия с данными, которые хранятся в системе управления реляционными базами данных. Синтаксис SQL схож с английским языком, поэтому его легко читать, писать и интерпретировать. Он позволяет вам писать запросы, определяющие подмножество данных, которые вы ищите. Эти запросы можно сохранять, уточнять, обмениваться ими и запускать в различных базах данных. 2. Что такое база данных? База данных (БД) – это набор данных, хранимых на компьютере. При этом сами данные структурированы таким образом, что их можно было легко получить. 3. Что такое реляционная база данных? Реляционная база данных – это разновидность базы данных. В ней используется структура, которая позволяет нам идентифицировать и обращаться к данным в привязке к другим частям данных из БД. Данные в реляционной БД часто организованы в виде таблиц. 4. Что такое РСУБД? Система управления реляционными базами данных (РСУБД) – это программа, позволяющая вам создавать, обновлять и администрировать реляционную базу данных. Для доступа к базам данных большинство РСУБД использует язык SQL. Самой популярной РСУБД считается MySQL. К другим системам относятся PostgreSQL, Oracle DB, SQL Server и SQLite. 5. Что такое таблица? Таблица – это набор данных, распределенных по строкам и столбцам. Иногда их называют «связями». В таблицах могут быть сотни, тысячи и иногда даже миллионы строк данных. 6. Что такое строка и столбец в таблице? Строка – это одна запись данных в таблице. Столбец – это набор значений данных определенного типа. 7. Что такое тип данных? Тип данных – это атрибут, который определяет тип данных в столбце. В каждом столбце БД есть тип данных. Несколько часто используемых типов данных: INTEGER, TEXT, DATE, REAL. 8. Что такое первичный и внешний ключ? Первичный ключ (primary key) – это столбец, который однозначно определяет каждую строку в таблице. Первичные ключи должны соответствовать следующим требованиям: ни одно значение не может быть пустым (NULL), каждое значение должно быть уникальным и в таблице не может быть более одного столбца с первичным ключом. Например, в таблице customers первичным ключом будет customer_id. Внешний ключ (foreign key) – это первичный ключ для одной таблицы, который присутствует и в другой таблице. Например, есть дополнительная таблица orders. В каждом заказе может храниться информация о клиенте. Поэтому внешним ключом будет столбец customer_id. 9. В чем отличие ALTER от UPDATE? Оператор ALTER используется для добавления нового столбца в таблицу. Он изменяет структуру таблицы. Оператор UPDATE используется для редактирования строки в таблице. Он изменяет существующие записи в таблице. 10. Что такое запрос? Запрос (query) – это оператор SQL для получения информации, хранимой в базе данных. Запросы позволяют нам «общаться» с базой данных, задавая вопросы и возвращая результирующий набор подходящих данных. 11. Что такое подзапрос? Подзапрос (subquery) – это внутренний запрос, вложенный во внешний. Запросы можно вложить через операторы SELECT, INSERT, UPDATE или DELETE. Если есть подзапрос, то он будет выполняться до запуска внешнего оператора. 12. Что такое ограничения? Ограничения (constraints) – это набор правил, через которых базе данных сообщается об ограничении типа данных, хранимых в столбцах. Они предписывают базе данных отклонять введенные данные, если они не соответствуют ограничению. Ограничения добавляют информацию о том, как может использоваться столбец, и вызываются после типа данных для столбца. Несколько примеров ограничений: PRIMARY KEY: однозначно определяет каждую строку и требует уникальности каждого значения. UNIQUE: каждое значение в столбце должно отличаться. NOT NULL: в столбцах обязательно должны быть значения. DEFAULT: дополнительный аргумент, который подставляется в качестве предполагаемого значения для каждой новой строки, если в ней не указано значение для этого столбца. 13. Что такое оператор? Оператор (statement) – это текст, который база данных распознает как допустимую команду. Операторами можно пользоваться для выполнения таких задач, как изменение структуры таблицы, обновление данных или извлечение данных из БД. Структура операторов может варьировать, но каждый из них должен заканчиваться точкой с запятой (;). Количество строк в операторе неважно. Оператор можно записать в одну строку или разделить на несколько (для лучшей читабельности). 14. Как вы проверите, есть ли в поле значение или нет? Если в поле отсутствует значение, оно обозначается как NULL. Чтобы проверить поля на пустые значения, можно прописать в качестве условия IS NULL: WHERE [столбец] IS NULL. Чтобы найти поля со значением, добавьте в условие IS NOT NULL: WHERE [столбец] IS NOT NULL. 15. Чем отличаются DISTINCT и UNIQUE? DISTINCT – это ключевое слово, которым мы пользуемся, если хотим вернуть уникальные значения на выводе. Оно отсеивает все повторяющиеся значения в конкретном столбце. UNIQUE – это ограничение, которым пользуются, чтобы все значения столбца отличались. Оно похоже на PRIMARY KEY, с той лишь разницей, что в таблице может быть множество разных столбцов с UNIQUE. 16. Для чего используются агрегатные функции? Агрегатные функции используются для выполнения вычислений на одном или нескольких значениях и возвращают одиночное значение с осмысленной информацией. Несколько примеров агрегатных функций: COUNT(), SUM(), MAX(), MIN(), AVG() и ROUND(). 17. Что такое соединение (JOIN)? JOIN – это способ объединения строк из двух и более таблиц посредством общего столбца. 18. В чем отличие INNER JOIN от LEFT JOIN? INNER JOIN используется для объединения строк из двух таблиц, которые соответствуют условию ON. В конечный результат не попадают строки, не соответствующие условию ON. LEFT JOIN сохраняет все строки из первой таблицы, вне зависимости от того, есть ли для них совпадающая по условию ON строка во второй таблице. 19. Для чего нужны оконные функции? Оконные функции (windows functions) нужны в случаях, когда вы хотите сохранить значения своей исходной таблицы и параллельно отобразить сгруппированную или суммарную информацию. Они похожи на агрегатные функции, но не сокращают количество строк в результате, а объединяют и группируют их в несколько результатов. 20. Что такое индексы и для чего они нужны? Индексы – это мощный инструмент, который используется в фоновом режиме БД для ускорения запросов и выступает в роли справочной таблицы для данных. Они нужны для эффективного хранения данных и быстрого их получения, что может быть критически важным для успеха крупных технологических компаний, которые обрабатывают петабайты данных каждый день.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59