По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Для начала стоит дать определение, что такое NMS система. NMS (Network Management System) – это система управления локальной сетью компании. NMS система позволяет значительно упростить процесс конфигурации центральной станции и терминалов, производить сбор и хранение информации о текущих и прошедших рабочих процессах сети, проводить анализ состояния сети, а также предоставляет информацию о работе сети в виде графиков и таблиц. Система дает большие возможности для управления производственной сетью компании и предоставляет профессиональный сервис. Большие компании и корпорации имеют огромную информационную сеть, к которой подключены множество различных устройств. Для того, чтобы управлять и осуществлять контроль над всеми этими устройствами и нужна NMS система. Эта система позволяет увидеть всю информационную сеть компании на одном экране и грамотно управлять ею. Без применения систем управления сетью, производить контроль и обслуживание сети достаточно сложно. При возникновении каких-либо поломок очень много рабочего времени тратится только на обнаружение проблем, от чего страдает весь рабочий процесс. С какими проблемами сталкиваются все компании, которые не используют NMS системы в работе своей производственной сети: Без использования NMS системы невозможно своевременное отреагировать на возникающие проблемы с сетью и быстро их устранить. Внедрение системы управления сетью позволит избежать подобных проблем; На поиск места и причины неисправности тратится около 30% рабочего времени инженеров по обслуживанию сети. С помощью NMS системы, эти вопросы решаются намного быстрее и эффективнее; Отсутствует контроль над доступом к сети. NMS система позволяет обнаружить и предотвратить несанкционированное подключение к локальной сети компании; Внедрение NMS систем в работу компании позволяет решать большое количество различных задач связанных с контролем и управлением производственной сетью. Специалисты IT отдела в любой момент смогут увидеть всю информацию о функционировании сети компании. К примеру, если произойдет скачок напряжения, то на каком-либо участке сети электричество может просто выключиться. Система управления сетью быстро определит местонахождение отсутствия электропитания. Какие преимущества дает использование NMS систем? При внедрении в работу производственной сети NMS системы, компания получает постоянный мониторинг состояния сети и возможность оперативного решения проблем в случае их появления. Какие преимущества дает использование NMS систем: Постоянный контроль работоспособности важнейших компонентов системы, которые принимают участие в рабочем процессе; Своевременное информирование о каждой возникшей неисправности; Визуализация всех сетевых и телекоммуникационных ресурсов в едином графическом интерфейсе и отображение параметров их работы; Система может определять корневые причины неисправностей, благодаря чему сокращается время, затрачиваемое на их устранение; Возможность удаленного мониторинга и управления объектами сети, а также устранения неисправностей; Хранение и анализ собранных данных о причинах неисправностей работы сети позволяет повышать надежность работы; Выявление несанкционированных подключений к сети снижает риск нарушения работы компании; Выводы Внедрение NMS систем в работу компании позволит IT отделу постоянно контролировать работу всей локальной сети компании. Без такой системы не обойтись большим корпорациям, в которых в рабочем процессе участвует огромное количество устройств. А использование систем управления сетями позволит эффективно контролировать их работу и не допускать возникновения непредвиденных ситуаций, а также утечек важной информации.
img
Почитать лекцию №15 про управление потоком пакетов в сетях можно тут. Совокупность проблем и решений, рассмотренных в предыдущих лекциях, дает некоторое представление о сложности сетевых транспортных систем. Как системные администраторы могут взаимодействовать с очевидной сложностью таких систем? Первый способ - рассмотреть основные проблемы, которые решают транспортные системы, и понять спектр решений, доступных для каждой из этих проблем. Второй - создание моделей, которые помогут понять транспортные протоколы с помощью: Помощь администраторам сетей в классификации транспортных протоколов по их назначению, информации, содержащейся в каждом протоколе, и интерфейсам между протоколами; Помочь администраторам сетей узнать, какие вопросы задавать, чтобы понять конкретный протокол или понять, как конкретный протокол взаимодействует с сетью, в которой он работает, и приложениями, для которых он несет информацию; Помощь администраторам сетей в понимании того, как отдельные протоколы сочетаются друг с другом для создания транспортной системы. Далее будет рассмотрен способ, с помощью которого администраторы могут более полно понимать протоколы: модели. Модели по сути являются абстрактными представлениями проблем и решений. Они обеспечивают более наглядное и ориентированное на модули представление, показывающее, как вещи сочетаются друг с другом. В этой лекции мы рассмотрим этот вопрос: Как можно смоделировать транспортные системы таким образом, чтобы администраторы могли быстро и полностью понять проблемы, которые эти системы должны решать, а также то, как можно объединить несколько протоколов для их решения? В этой серии лекции будут рассмотрены три конкретные модели: Модель Министерства обороны США (United States Department of Defense - DoD) Модель взаимодействия открытых систем (Open Systems Interconnect - OSI) Модель рекурсивной интернет-архитектуры (Recursive Internet Architecture - RINA) Модель Министерства обороны США (DoD) В 1960-х годах Агентство перспективных исследовательских проектов Министерства обороны США (DARPA) спонсировало разработку сети с коммутацией пакетов для замены телефонной сети в качестве основного средства компьютерной связи. Вопреки мифу, первоначальная идея состояла не в том, чтобы пережить ядерный взрыв, а скорее в том, чтобы создать способ для различных компьютеров, используемых в то время в нескольких университетах, исследовательских институтах и правительственных учреждениях, чтобы общаться друг с другом. В то время каждая компьютерная система использовала свою собственную физическую проводку, протоколы и другие системы; не было никакого способа соединить эти устройства, чтобы даже передавать файлы данных, не говоря уже о создании чего-то вроде "Всемирной паутины" или кросс-исполняемого программного обеспечения. Эти оригинальные модели часто разрабатывались для обеспечения связи между терминалами и хостами, поэтому вы могли установить удаленный терминал в офис или общественное место, которое затем можно было использовать для доступа к общим ресурсам системы или хоста. Большая часть оригинальных текстов, написанных вокруг этих моделей, отражает эту реальность. Одной из первых разработок в этой области была модель DoD, показанная на рисунке 1. DoD разделяла работу по передаче информации по сети на четыре отдельные функции, каждая из которых могла выполняться одним из многих протоколов. Идея наличия нескольких протоколов на каждом уровне считалась несколько спорной до конца 1980-х и даже в начале 1990-х гг. На самом деле одним из ключевых различий между DoD и первоначальным воплощением модели OSI является концепция наличия нескольких протоколов на каждом уровне. В модели DoD: Физический уровень отвечает за получение "0" и "1" модулированных или сериализованных на физическом канале. Каждый тип связи имеет свой формат для передачи сигналов 0 или 1; физический уровень отвечает за преобразование 0 и 1 в физические сигналы. Интернет-уровень отвечает за передачу данных между системами, которые не связаны между собой ни одной физической связью. Таким образом, уровень интернета предоставляет сетевые адреса, а не локальные адреса каналов, а также предоставляет некоторые средства для обнаружения набора устройств и каналов, которые должны быть пересечены, чтобы достичь этих пунктов назначения. Транспортный уровень отвечает за построение и поддержание сеансов между коммутирующими устройствами и обеспечивает общий прозрачный механизм передачи данных для потоков или блоков данных. Управление потоком и надежная транспортировка также могут быть реализованы на этом уровне, как и в случае с TCP. Прикладной уровень - это интерфейс между Пользователем и сетевыми ресурсами или конкретными приложениями, которые используют и предоставляют данные другим устройствам, подключенным к сети. В частности, прикладной уровень кажется неуместным в модели сетевого транспорта. Почему приложение, использующее данные, должно считаться частью транспортной системы? Потому что ранние системы считали пользователя-человека конечным пользователем данных, а приложение - главным образом способом изменить данные, которые будут представлены фактическому пользователю. Большая часть обработки от машины к машине, тяжелая обработка данных перед их представлением пользователю и простое хранение информации в цифровом формате даже не рассматривались как жизнеспособные варианты использования. Поскольку информация передавалась от одного человека другому, приложение считалось частью транспортной системы. Два других момента могли бы помочь включению прикладного уровня сделать его более осмысленным. Во-первых, в конструкции этих оригинальных систем было два компонента: терминал и хост. Терминал тогда был дисплейным устройством, приложение располагалось на хосте. Во-вторых, сетевое программное обеспечение не рассматривалось как отдельная "вещь" в системе, маршрутизаторы еще не были изобретены, как и любое другое отдельное устройство для обработки и пересылки пакетов. Скорее, хост был просто подключен к терминалу или другому хосту; сетевое программное обеспечение было просто еще одним приложением, запущенным на этих устройствах. Со временем, когда модель OSI стала чаше использоваться, модель DoD была изменена, чтобы включить больше уровней. Например, на рисунке 2, на диаграмме, взятой из статьи 1983 года о модели DoD ("Cerf and Cain, "The DoD Internet Architecture Model"), есть семь слоев (семь почему-то являются магическим числом). Были добавлены три слоя: Уровень утилит - это набор протоколов, "живущих" между более общим транспортным уровнем и приложениями. В частности, простой протокол передачи почты (SMTP), протокол передачи файлов (FTP) и другие протоколы рассматривались как часть этого уровня. Сетевой уровень из четырехслойной версии был разделен на сетевой уровень и уровень интернета. Сетевой уровень представляет различные форматы пакетов, используемые на каждом типе канала, такие как радиосети и Ethernet (все еще очень Новые в начале 1980-х годов). Уровень межсетевого взаимодействия объединяет представление приложений и протоколов утилит, работающих в сети, в единую службу интернет-дейтаграмм. Канальный уровень был вставлен для того, чтобы различать кодирование информации на различные типы каналов и подключение устройства к физическому каналу связи. Не все аппаратные интерфейсы обеспечивали уровень связи. Со временем эти расширенные модели DoD потеряли популярность; модель с четырьмя слоями является той, на которую чаще всего ссылаются сегодня. На это есть несколько причин: Уровни утилит и приложений в большинстве случаев дублируют друг друга. Например, FTP мультиплексирует контент поверх протокола управления передачей (TCP), а не как отдельный протокол или слой в стеке. TCP и протокол пользовательских дейтаграмм (UDP) со временем превратились в два протокола на транспортном уровне, а все остальное (как правило) работает поверх одного из этих двух протоколов. С изобретением устройств, предназначенных в первую очередь для пересылки пакетов (маршрутизаторы и коммутаторы), разделение между сетевым и межсетевым уровнями было преодолено определенными событиями. Первоначальная дифференциация проводилась в основном между низкоскоростными дальнемагистральными (широкозонными) и короткозонными локальными сетями; маршрутизаторы обычно брали на себя бремя установки каналов в широкополосные сети вне хоста, поэтому дифференциация стала менее важной. Некоторые типы интерфейсов просто не имеют возможности отделить кодирование сигнала от интерфейса хоста, как было предусмотрено в разделении между канальным и физическим уровнями. Следовательно, эти два уровня обычно объединены в одну "вещь" в модели DoD. Модель DoD исторически важна, потому что Это одна из первых попыток систематизировать функциональность сети в модели. Это модель, на которой был разработан набор протоколов TCP / IP (на котором работает глобальный Интернет); Артефакты этой модели важны для понимания многих аспектов проектирования протокола TCP / IP. В нее была встроена концепция множественных протоколов на любом конкретном уровне модели. Это подготовило почву для общей концепции сужения фокуса любого конкретного протокола, позволяя одновременно работать многим различным протоколам в одной и той же сети.
img
Всем привет! Спешим рассказать об ещё одном программном телефоне (Softphone), который, по нашему мнению заслуживает внимания - DrayTek DrayTek – это программный телефон, совместимый с любой версией Windows и разработанный специально для соответствующих PBX – Vigor PBX и сервиса DrayTel, однако, основанный на открытом протоколе SIP, он может быть использован и для других IP-АТС, например – Asterisk. Краткий обзор DrayTek поддерживает основные функции, необходимые для комфортной работы, такие как: Всплывающая карточка при входящем звонке Постановка на удержание Перевод звонка (что очень полезно, т.к во многих софтфонах для использования данного функционала требуется покупать расширенную версию) Переадресация на другой номер (также обычно является платной функцией) Журнал вызовов и записная книжка Отображение статусов группы - BLF Шифрование голосового трафика ZRTP Организация защищённого PPTP туннеля до PBX Настройка и использование Скачать последнюю версию софтфона можно с сайта разработчика. Установка абсолютно стандартная и занимает секунды. После установки DrayTek автоматически попытается отыскать в сети совместимую Vigor PBX с помощью автопровижининга. Если у Вас такой PBX нет, то отклоните предложение. Важно! Для того, чтобы DrayTek заработал на Вашем компьютере должны быть звуковая карта. Добавим SIP-аккаунт. Для этого переходим во вкладку Settings → SIP и нажимаем на плюс. Заполняем все указанные поля в соответствии с настройками внутреннего номера (Extension), зарегистрированного на нашей IP-АТС. В нашем случае настройки производятся для номера 5011 При настройке SIP-аккаунта в DrayTek не забудьте указать правильный SIP порт. Если всё было указано верно, то после регистрации вы увидите надпись Ext: registered successfully. Теперь можно совершать вызовы. Приняв вызов, становятся доступны все необходимые функции – постановка/снятие звонка на удержание, перевод звонка, видео-звонок. Одна из самых полезных функций данного софтфона – это переадресация вызовов. Чтобы её настроить переходим в Settings → General и выбираем Call Forward Settings В поле To вводим желаемый номер для перевода. Это может быть как городской, так и внутренний номер, зарегистрированный на IP-АТС. Выберите желаемые условия перевода - Always - переводить звонки на указанный номер всегда, On Busy - переводить звонки только когда внутренний номер занят, On Timeout - переводить звонки по тайм-ауту, который указывается ниже. Чтобы переадресация заработала обязательно нужно сменить свой статус с Available на FWD и нажать OK
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59