По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Телефонная станция Cisco Unified Communications Manager (далее CUCM) является системой обработки вызовов на базе программного обеспечения, разработанного компанией Cisco Systems. Первая версия CUCM была анонсирована в 1997 году, под названием CallManager 1.0. На момент написания статьи последняя и самая актуальная версия - CUCM 10.5. CUCM работает с такими элементами сетей передачи голоса поверх протокола IP (VoIP) как: шлюзы, телефонные аппараты, мосты для конференцсвязи, голосовая почта, видеоконференцсвязью и многими другими. Чаще всего, для работы с оконечными устройствами CUCM использует собственный протокол сигнализации, разработанный компанией Cisco Systems под названием Skinny Client Control Protocol (SCCP). Помимо собственных разработок, CUCM поддерживает и открытые стандарты, такие как H.323, Media Gateway Control Protocol (MGCP) или Session Initiation Protocol (SIP). Схема работы CUCM приведена рисунке ниже: На рисунке схематично обозначена схема работы CUCM в рамках корпоративной сети. Пунктирными линиями обозначены Real-time Transport Protocol (RTP) потоки, которые переносят в поле информационной (полезной) нагрузки медиа – данные разговора. Особое внимание следует обратить на расположение линий направления RTP – они проходят напрямую от телефонного аппарата до телефонного аппарата. Телефонная станция CUCM контролирует телефонную сигнализацию, на данном примере, по протоколам SIP/SCCP. Это означает, что если во время разговора CUCM перестанет работать, разговор между абонентами будет продолжен, но такие функции как удержание, трансфер, отбой вызова и другие функции управления вызовом будут не доступны. Цифровая телефонная станция CUCM выполнена на базе операционной системы Linux с закрытыми правами администратора и с предустановленной базой данных IBM Informix. В совокупности, такой вид операционной системы носит название VOS (voice operating system). Продукт устанавливается пакетом, сначала VOS, а затем само программное обеспечение. Интерфейс управления цифровой телефонной станцией CUCM выполнен как WEB – приложение, доступное через протокол HyperText Transfer Protocol (HTTP). Интерфейс имеет удобную навигацию по вкладкам, пять разных Graphical user interface (GUI) для сегментации функций администрирования и возможность предоставлять уровни доступа администраторам. Основной интерфейс проиллюстрирован на рисунке: Как было сказано ранее, CUCM имеет пять различных панелей администрирования: Cisco Unified CM Administration Cisco Unified Reporting Disaster Recovery System Cisco Unified Serviceability Cisco Unified OS Administration Интерфейс Cisco Unified CM Administration – основной интерфейс администратора. Здесь можно настраивать системные настройки, параметры маршрутизации вызовов, настройка медиа – ресурсов, таких как Music On Hold (MOH), параметров интеграции с другими продуктами компании Cisco Systems, конфигурацию телефонных аппаратов, шлюзов, «привратников» (gatekeepers), администрирование групп пользователей и многие другие настройки. Интерфейс Cisco Unified Reporting обеспечивает доступ к отчетам о работе телефонной станции. Данная консоль отчетности собирает данные с различных системных журналов и предоставляет эту информацию в просто для администратора виде. Интерфейс Disaster Recovery System (DRS) создан для резервирования конфигурации, или как принято говорить «бэкапа» телефонной станции CUCM. Бэкап может происходить как локально на сервер, так и на удаленные площадки по протоколу SSH File Transfer Protocol (SFTP). Графический интерфейс Cisco Unified Serviceability предоставляет наблюдение и контроль работоспособности телефонной станции, включая в себя такие настройки как конфигурацию опций оповещения о проблемах в работе CUCM, систему трассировки для обнаружения причин проблем, богатое меню инструментов, в котором можно смотреть отчеты Call Detail Record (CDR). Данный интерфейс позволяет настроить параметры Simple Network Management Protocol (SNMP), созданного для управления и контроля. Последним в списке интерфейсов значится Cisco Unified OS Administration. Он предназначен для мониторинга аппаратной платформы и различных системных статистических данных, таких как: загруженность центрального процессора, свободного пространства жестких дисков, мониторинга системного времени, информации об IP – адресах, работы в рамках протокола Internet Control Message Protocol (ICMP). Еще один немаловажный интерфейс, это Command Line Interface (CLI) – консоль. Он удобен для перезагрузки сервиса, например, при недоступности основного графического интерфейса через порт 8080. Cisco UCM - решение для крупного бизнеса или государственного учреждения Телефонная станция CUCM это гибкое и масштабируемое решение. Одним из важных преимуществ является возможность кластеризации серверов, или другими словами объединения. В общем случае, в одном кластере может работать до 20 серверов. Среди них только 8 серверов занимаются обработкой вызовов, остальные, это дополнительные сервера предназначенные для расширения функционала кластера (сервисы музыка на удержании, Trivial File Transfer Protocol (TFTP) сервер и многие другие). Работая в кластере, сервера CUCM могут работать с 30 000 абонентами. При работе в кластере различают два типа серверов – «паблишер» (публикатор) и «сабскрайбер» (подписчики). В данной модели один сервер, который является «паблишером» дублирует базу данных на все остальные сервера, которые являются «сабскрайберами. Схема работы кластера показана на рисунке: Большое преимущество IP PBX CUCM – это возможность развернуть сервер в виртуальной среде. Системы виртуализации появились после того, как соотношение эффективности использования одного аппаратного сервера к стоимости данного сервера, с каждым днем стремилось к меньшему и меньшему значению. Виртуализация позволяет делить аппаратные ресурсы сервера между различными приложениями. Например, предприятие покупает аппаратный сервер, для конкретной цели. Системный администратор данной организации устанавливает на него операционную систему на базе Windows, а затем, приложение, для которого был куплен этот сервер. Спустя некоторое время, у организации появилось требование для внедрения в корпоративный контур бизнес – приложений, которые работают на базе Linux. За неимением систем виртуализации, компания сталкивается с новой проблемой – покупкой нового сервера, по причине того, что разнородные операционные системы не смогут существовать на одном и том же аппаратном ресурсе. При наличии системы виртуализации, компания может установить специальное программное обеспечение «гипервизор» на имеющийся Windows сервер. Гипервизор позволит изолировать друг от друга различные операционные системы на одном и том же сервере, обеспечит безопасность, защиту, целостность данных, предоставит централизованное и удобное управление виртуальным серверным ресурсом компании, а так же множество встроенных средств и инструментов автоматизации, предназначенных для автоматического резервирования данных и конфигурации серверов. Предприятия решит поставленную задачу, оптимизировав расходы на аппаратные сервера. Преимущества Выделим основные конкурентные преимущества систем виртуализации Экономия расходов предприятия на покупке дополнительного сервера. Экономия места в телекоммуникационной стойке. Снижение тепловыделения и электропотребления. «Бесшовное» обновление операционной системы сервера, позволяющее не производить перезагрузку и не останавливать работу приложения. Централизация управления и администрирования серверов. Гибкая настройка конфигурации, автоматического резервирования. Создание отказоустойчивости внутренними средствами программного обеспечения гипервизора. Общий принцип работы систем виртуализации проиллюстрирован на рисунке: Виртуализация CUCM Ведущие производители систем виртуализации, это такие компании как VMware, Hyper-V, Xen и Citrix Systems.
img
Всем известно, что кроме GSM-шлюзов FS (FreeSWITCH) умеет работать и с dongle. Как заставить с донгла получить СМСку, расскажем в этой статье. Предполагается, что у вас уже установлен и настроен mod_gsmopen и Lua. Если нет, то предлагаю обратиться к официальному источнику https://freeswitch.com/confluence/display/FREESWITCH/mod_gsmopen Для работы с СМСками на нужно настроить chatplan ../freeswitch/conf/chatplan/default.xml В котором нам нужно написать примерно следующее: .. <extension name="demo"> <condition field="to" expression="^gsm(.*)$" break="on-true"> <action application="lua" data="mail.lua"/> </condition> </extension> .. То есть, мы указываем имена донглов, которые нужно слушать и отправляем в Lua-скрипт, который и будет пересылать СМСку в нужное нам место - Grounwire. Пример Lua-скрипта: mail.lua -- -- Устанавливаем переменные выдергивая из заголовков сообщений local from = message:getHeader("from"); local to = message:getHeader("to"); local body = message:getBody(); local time = message:getHeader("Event-Date-Local"); local ext = "1001"; -- Указываем extension куда нужно отправлять СМСку -- Переправляем полученные СМС в софтфон freeswitch.consoleLog("info", "chat console*********************************************************************** ") -- Выводим в CLI local event = freeswitch.Event("CUSTOM", "SMS::SEND_MESSAGE"); event:addHeader("proto", "sip"); event:addHeader("dest_proto", "sip"); event:addHeader("from", "sip:".. from .."@voip.ru"); event:addHeader("from_full", "sip:".. from .."@voip.ru:5063"); -- Я думаю это понятно что означает :) event:addHeader("to", "".. ext .."@voip.ru"); event:addHeader("subject", "sip:".. to .."@voip.ru:5063"); event:addHeader("type", "text/html"); event:addHeader("hint", "the hint"); event:addHeader("replying", "true"); event:addBody('Сообщение для '.. to ..' в '.. time ..', '.. body ..''); event:fire(); Вот и всё. Теперь все сообщения, которые будут приходить на dongle будут перенаправляться в софтфон: Так же можно писать и в базу MySQL и отправлять на почту. У меня это именно так сделано. Кроме этого можно и отправлять СМСки из веб-морды, а так же, и через смартфон, но для этого нужно дописать Lua-скрипт. А ещё можно управлять, например, своим компьютером на основе текста в СМС, то есть, перезагрузить/выключить, или ещё чем-то. Так у меня отправляется СМСка из WEB – интерфейса:
img
Привет! Сегодня мы расскажем про то как настроить Site-To-Site IPSec VPN туннель между роутерами Cisco. Такие VPN туннели используются обеспечения безопасной передачи данных, голоса и видео между двумя площадками (например, офисами или филиалами). Туннель VPN создается через общедоступную сеть интернет и шифруется с использованием ряда продвинутых алгоритмов шифрования, чтобы обеспечить конфиденциальность данных, передаваемых между двумя площадками. В этой статье будет показано, как настроить и настроить два маршрутизатора Cisco для создания постоянного безопасного туннеля VPN типа «сеть-сеть» через Интернет с использованием протокола IP Security (IPSec) . В рамках статьи мы предполагаем, что оба маршрутизатора Cisco имеют статический публичный IP-адрес. ISAKMP (Internet Security Association and and Key Management Protocol) и IPSec необходимы для построения и шифрования VPN-туннеля. ISAKMP, также называемый IKE (Internet Key Exchange) , является протоколом согласования (negotiation protocol), который позволяет двум хостам договариваться о том, как создать сопоставление безопасности IPsec. Согласование ISAKMP состоит из двух этапов: фаза 1 и фаза 2. Во время фазы 1 создается первый туннель, который защищает последующие сообщения согласования ISAKMP. Во время фазы 2 создается туннель, который защищает данные. Затем в игру вступает IPSec для шифрования данных с использованием алгоритмов шифрования и предоставляющий аутентификацию, шифрование и защиту от повторного воспроизведения. Требования к IPSec VPN Чтобы упростить понимание настройки разделим его на две части: Настройка ISAKMP (Фаза 1 ISAKMP) Настройка IPSec (Фаза 2 ISAKMP, ACL, Crypto MAP) Делать будем на примере, который показан на схеме – два филиала, оба маршрутизатора филиалов подключаются к Интернету и имеют статический IP-адрес, назначенный их провайдером. Площадка №1 имеет внутреннею подсеть 10.10.10.0/24, а площадка №2 имеет подсеть 20.20.20.0/24. Цель состоит в том, чтобы безопасно соединить обе сети LAN и обеспечить полную связь между ними без каких-либо ограничений. Настройка ISAKMP (IKE) - ISAKMP Phase 1 IKE нужен только для установления SA (Security Association) для IPsec. Прежде чем он сможет это сделать, IKE должен согласовать отношение SA (ISAKMP SA) с одноранговым узлом (peer). Начнем с настройки маршрутизатора R1 первой площадки. Первым шагом является настройка политики ISAKMP Phase 1: R1(config)# crypto isakmp policy 1 R1(config-isakmp)# encr 3des R1(config-isakmp)# hash md5 R1(config-isakmp)# authentication pre-share R1(config-isakmp)# group 2 R1(config-isakmp)# lifetime 86400 Приведенные выше команды означают следующее: 3DES - метод шифрования, который будет использоваться на этапе 1 MD5 - алгоритм хеширования Pre-Share - использование предварительного общего ключа (PSK) в качестве метода проверки подлинности Group 2 - группа Диффи-Хеллмана, которая будет использоваться 86400 - время жизни ключа сеанса. Выражается либо в килобайтах (сколько трафика должно пройти до смены ключа), либо в секундах. Значение установлено по умолчанию. Мы должны отметить, что политика ISAKMP Phase 1 определяется глобально. Это означает, что если у нас есть пять разных удаленных площадок и настроено пять разных политик ISAKMP Phase 1 (по одной для каждого удаленного маршрутизатора), то, когда наш маршрутизатор пытается согласовать VPN-туннель с каждой площадкой, он отправит все пять политик и будет использовать первое совпадение, которое принято обоими сторонами. Далее мы собираемся определить Pre-Shared ключ для аутентификации с нашим партнером (маршрутизатором R2) с помощью следующей команды: R1(config)# crypto isakmp key merionet address 1.1.1.2 Pre-Shared ключ партнера установлен на merionet, а его публичный IP-адрес - 1.1.1.2. Каждый раз, когда R1 пытается установить VPN-туннель с R2 (1.1.1.2), будет использоваться этот ключ. Настройка IPSec – 4 простых шага Для настройки IPSec нам нужно сделать следующее: Создать расширенный ACL Создать IPSec Transform Создать криптографическую карту (Crypto Map) Применить криптографическую карту к общедоступному (public) интерфейсу Давайте рассмотрим каждый из вышеперечисленных шагов. Шаг 1: Создаем расширенный ACL Нам нужно создать расширенный access-list (про настройку Extended ACL можно прочесть в этой статье) и в нем определить какой траффик мы хотим пропускать через VPN-туннель. В этом примере это будет трафик из одной сети в другую с 10.10.10.0/24 по 20.20.20.0/24. Иногда такие списки называют crypto access-list или interesting traffic access-list. R1(config)# ip access-list extended VPN-TRAFFIC R1(config-ext-nacl)# permit ip 10.10.10.0 0.0.0.255 20.20.20.0 0.0.0.255 Шаг 2: Создаем IPSec Transform Следующим шагом является создание набора преобразования (Transform Set), используемого для защиты наших данных. Мы назвали его TS. R1(config)# crypto ipsec transform-set TS esp-3des esp-md5-hmac Приведенная выше команда определяет следующее: ESP-3DES - метод шифрования MD5 - алгоритм хеширования Шаг 3: Создаем Crypto Map Crypto Map является последнем этапом нашей настройки и объединяет ранее заданные конфигурации ISAKMP и IPSec: R1(config)# crypto map CMAP 10 ipsec-isakmp R1(config-crypto-map)# set peer 1.1.1.2 R1(config-crypto-map)# set transform-set TS R1(config-crypto-map)# match address VPN-TRAFFIC Мы назвали нашу криптографическую карту CMAP. Тег ipsec-isakmp сообщает маршрутизатору, что эта криптографическая карта является криптографической картой IPsec. Хотя в этой карте (1.1.1.2) объявлен только один пир, существует возможность иметь несколько пиров. Шаг 4: Применяем криптографическую карту к общедоступному интерфейсу Последний шаг - применить криптографическую карту к интерфейсу маршрутизатора, через который выходит траффик. Здесь исходящим интерфейсом является FastEthernet 0/1. R1(config)# interface FastEthernet0/1 R1(config- if)# crypto map CMAP Обратите внимание, что интерфейсу можно назначить только одну криптокарту. Как только мы применим криптографическую карту к интерфейсу, мы получаем сообщение от маршрутизатора, подтверждающее, что isakmp включен: “ISAKMP is ON”. На этом этапе мы завершили настройку IPSec VPN на маршрутизаторе Площадки 1. Теперь перейдем к маршрутизатору Площадки 2 для завершения настройки VPN. Настройки для R2 идентичны, с отличиями лишь в IP-адресах пиров и ACL. R2(config)# crypto isakmp policy 1 R2(config-isakmp)# encr 3des R2(config-isakmp)# hash md5 R2(config-isakmp)# authentication pre-share R2(config-isakmp)# group 2 R2(config-isakmp)# lifetime 86400 R2(config)# crypto isakmp key merionet address 1.1.1.1 R2(config)# ip access-list extended VPN-TRAFFIC R2(config-ext-nacl)# permit ip 20.20.20.0 0.0.0.255 10.10.10.0 0.0.0.255 R2(config)# crypto ipsec transform-set TS esp-3des esp-md5-hmac R2(config)# crypto map CMAP 10 ipsec-isakmp R2(config-crypto-map)# set peer 1.1.1.1 R2(config-crypto-map)# set transform-set TS R2(config-crypto-map)# match address VPN-TRAFFIC R2(config)# interface FastEthernet0/1 R2(config- if)# crypto map CMAP Трансляция сетевых адресов (NAT) и VPN-туннели IPSec В реальной схеме трансляция сетевых адресов (NAT), скорее всего, будет настроена для предоставления доступа в интернет внутренним хостам. При настройке VPN-туннеля типа «Site-To-Site» обязательно нужно указать маршрутизатору не выполнять NAT (deny NAT) для пакетов, предназначенных для удаленной сети VPN. Это легко сделать, вставив оператор deny в начало списков доступа NAT, как показано ниже: Для первого маршрутизатора: R1(config)# ip nat inside source list 100 interface fastethernet0/1 overload R1(config)# access-list 100 deny ip 10.10.10.0 0.0.0.255 20.20.20.0 0.0.0.255 R1(config)# access-list 100 permit ip 10.10.10.0 0.0.0.255 any Для второго маршрутизатора: R2(config)# ip nat inside source list 100 interface fastethernet0/1 overload R2(config)# access-list 100 deny ip 20.20.20.0 0.0.0.255 10.10.10.0 0.0.0.255 R2(config)# access-list 100 permit ip 20.20.20.0 0.0.0.255 any Инициализация и проверка VPN-туннеля IPSec К этому моменту мы завершили нашу настройку, и VPN-туннель готов к запуску. Чтобы инициировать VPN-туннель, нам нужно заставить один пакет пройти через VPN, и этого можно достичь, отправив эхо-запрос от одного маршрутизатора к другому: R1# ping 20.20.20.1 source fastethernet0/0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 20.20.20.1, timeout is 2 seconds: Packet sent with a source address of 10.10.10.1 .!!!! Success rate is 80 percent (4/5), round-trip min/avg/max = 44/47/48 ms Первое эхо-сообщение icmp (ping) получило тайм-аут, но остальные получили ответ, как и ожидалось. Время, необходимое для запуска VPN-туннеля, иногда превышает 2 секунды, что приводит к истечению времени ожидания первого пинга. Чтобы проверить VPN-туннель, используйте команду show crypto session: R1# show crypto session Crypto session current status Interface: FastEthernet0/1 Session status: UP-ACTIVE Peer: 1.1.1.2 port 500 IKE SA: local 1.1.1.1/500 remote 1.1.1.2/500 Active IPSEC FLOW: permit ip 10.10.10.0/255.255.255.0 20.20.20.0/255.255.255.0 Active SAs: 2, origin: crypto map Готово! Мы только что успешно подняли Site-To-Site IPSEC VPN туннель между двумя маршрутизаторами Cisco!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59