По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Cisco CUBE (Cisco Unified Border Element) - контролер граничных сессий (SBC) от компании Cisco. В статье мы поговорим о том, как настроить так называемый SIP Forking, который позволяет отправить SIP сигнализацию на несколько устройств сразу. В примере мы покажем, как настроить SIP Forking на CUBE для записи видео – звонков, например, для последующего анализа системой записи. Что мы имеем Интегрированное приложение Cisco Unified Border Element (далее CUBE) является частью программного обеспечения маршрутизатора CISCO2911, параметры которого приведены ниже: Cisco CISCO2911/K9 (revision 1.0) with 483328K/40960K bytes of memory. Processor board ID ABCDEFAAAAA 3 Gigabit Ethernet interfaces 6 Serial interfaces 1 terminal line 2 Channelized E1/PRI ports 1 Virtual Private Network (VPN) Module DRAM configuration is 64 bits wide with parity enabled. 255K bytes of non-volatile configuration memory. 32K bytes of USB token usbtoken0 (Read/Write) 255744K bytes of ATA System CompactFlash 0 (Read/Write) Prerequisites Перед началом нужно выполнить следующие условия: маршрутизатор сконфигурирован в качестве CUBE; версия Cisco IOS 15.2(1) или выше; видео – звонок устанавливается по схеме SIP-to-SIP; используется адресация версии IPv4; ключевые составляющие вызова проходят через CUBE, включая SIP – сигнализацию и медиа - потоки; в рамках устанавливаемого видео – вызова не происходит транскодирования с высокой нагрузкой; не используется SRTP (Secure Real-time Transport Protocol); Схема следующая: Настройка Для настройки CUBE необходимо подключится к серверу по протоколу Telnet и ввести следующие логин и пароль: UserName: merionet Password: ****** Переходим в режим конфигурации: enable configure terminal У нас 192.168.0.2 – IP – адрес системы записи, а 192.168.0.3 - адрес CUCM. В разделе voice service voip, необходимо добавить IP – адрес системы записи и CUCM в список «доверенных» IP – адресов и указать прочие опции, как указано ниже: voice service voip ip address trusted list ipv4 192.168.0.2 255.255.255.255 ipv4 192.168.0.3 255.255.255.255 address-hiding mode border-element media flow-around allow-connections sip to sip fax protocol t38 version 0 ls-redundancy 0 hs-redundancy 0 fallback none sip asymmetric payload full early-offer forced midcall-signaling passthru g729 annexb-all video screening Создаем media profile recorder, в котором необходимо указать тэг dial – peer, который смотрит в сторону системы записи. Помимо этого, необходимо создать профиль для записи видео с опциями, которые указаны ниже. Оба профиля записи указываются в настройке media class: media profile recorder 100 media-recording 114 ! media profile video 455 monitor-ref-frames h264-packetization-mode 0 ref-frame-req rtcp retransmit-interval 50 retransmit-count 4 ref-frame-req sip-info ! media class 3 recorder profile 100 video profile 455 Теперь, на входящем и исходящем dial – peer указываем созданный ранее media class: dial-peer voice 123 voip destination-pattern 114 rtp payload-type cisco-codec-video-h264 112 session protocol sipv2 session target ipv4:192.168.0.2 voice-class sip options-keepalive voice-class codec 1 offer-all media-class 3 dtmf-relay rtp-nte no vad ! dial-peer voice 124 voip destination-pattern 1402$ // маршрут в сторону PBX rtp payload-type cisco-codec-video-h264 112 session protocol sipv2 session target ipv4:192.168.0.3 session transport tcp voice-class codec 1 offer-all voice-class sip options-keepalive up-interval 100 down-interval 50 retry 6 voice-class sip bind control source-interface GigabitEthernet0/1 voice-class sip bind media source-interface GigabitEthernet0/1 media-class 3 dtmf-relay rtp-nte no vad Сохраняем конфигурацию: copy running-config startup-config
img
Мессенджер Telegram - удобное и популярное средство связи на территории РФ. Несмотря на ограничение доступа, многие юзеры продолжают пользоваться и обмениваться сообщениями в Телеграме. А кто-то пошел еще дальше и интегрирует различные системы с отличным и прозрачным API от «телеги». Сегодня поговорим про готовый модуль интеграции с Telegram для графической оболочки FreePBX, который будет отправлять вам уведомления о пропущенных вызовах и в случае, если пользователю оставлена голосовая почта. Кстати, этот материал и модуль в очередной раз прислал наш друг Максим (BioDamage) через портал ShareIT :) Обновление 0.1.1 - 15 августа 2018 г.: Поддержка extensions типа SIP, PJSIP, IAX2; Работа в группах вызовов (ring group); Модуль протестирован на сборках FreePBX Distro (SNG7-FPBX-64bit-1805-1.iso) и на чистом Asterisk поверх Debian с отдельным web – интерфейсом FreePBX 14. Работает :) Профит и идея Настройка кастомных контекстов и корректировка диалплана вручную бывает сложна для новичков, которые только приступают к изучению Asterisk и используют графическую оболочку FreePBX. К тому же, большой недостаток таких интеграция, это отсутствие гибкой настройки уведомлений (кому отправлять, а кому нет, в том числе персонализированные уведомления). Есть потребность – будет и решение. За основу был взят один из старых модулей под названием missedcallnotify человека по имени John Nurick. Скачать модуль можно по ссылке ниже: Скачать модуль для FreePBX Установка Установка вполне стандартная – переходим в раздел Admin → Module Admin и нажимаем Upload modules. В следующем меню выбираем Upload (From Hard Disk), выбираем архив, который скачали по кнопке выше и загружаем: После этого, в списке модулей находим модуль Missed Call Notifications Telegram, раскрываем описание и жмем Install: Готово. Переходим к настройке модуля. Настройка Cоздаем бота в Телеграме (если его нет). Воспользуйтесь нашим пошаговым материалом по созданию бота, который доступен по ссылке ниже. Выполнив все шаги, которые указаны в пункте «Создание бота в Telegram» - возвращайтесь сюда и переходите к следующему шагу. Создание бота С возвращением :) В разделе Applications → Extensions, выбираем нужный нам внутренний номер и открываем его для редактирования. Во вкладке Other делаем следующее: Уведомления - чтобы включить уведомления, выбираем Enabled, выключить - Disabled; Токен телеграм бота - токен, который вы получили, пройдя по ссылке в начале этого раздела; Telergram ID - ID группового чата, который вы получили, пройдя по ссылке в начале этого раздела, либо личный идентификатор; Тест Мы – инженеры. И, чтобы проверить модуль, мы смотрим в консоль, а не в лучезарный интерфейс Telegram :) Итак, звоним, не отвечаем на вызов: Как тебе такое, Илон Маск?
img
Допустим нам нужно отправить почтой посылку куда-то в Лондон. Что мы делаем? Идем в почту, берём специальный бланк и заполняем соответствующие поля. Отправитель Вася Пупкин, адрес: ул. Тверская, дом 40, кв. 36., Москва, Россия. Кому: Шерлок Холмс, Baker Street 221B, London, United Kingdom. То есть мы отправили посылку конкретному лицу, проживающему по конкретному адресу. Как и в реальном мире, в мире информационных технологий тоже есть своя адресация. В данном случае получателем выступает компьютер, за которым закреплён соответствующий IP адрес. IP aдрес это уникальный идентификатор устройства, подключённого к локальной сети или интернету. p> Видео про IP - адрес На данный момент существуют две версии IP адресов: IP версии 4 (IPv4) и IP версии 6 (IPv6). Смысл создания новой версии заключается в том, что IP адреса в 4-ой версии уже исчерпаны. А новые устройства в сети появляются с огромной скоростью и им всем нужно выделать свой уникальный адрес. IPv4 представляет собой 32-битное двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. Но так как компьютеры понимают только двоичную систему исчисления, то указанный адрес преобразуют в двоичную форму - 11000000 10101000 00000000 00000000. Длина же IPv6 адресов равна 128-битам. IPv6 адрес представляется в виде строки шестнадцатеричных цифр, разделенной двоеточиями на восемь групп, по 4 шестнадцатеричных цифрр в каждой. Например: 2003:00af:café:3daf:1000:edaf:1001:afad. Каждая группа равна 16 битам в двоичном представлении. IP адреса принято делить на публичные и приватные. Публичный адрес это адрес, который виден в Интернете. Все сайты в глобальной сети имеют публичный или "белый" IP адрес. Для merionet.ru он равен 212.193.249.136. Да и ваш компьютер тоже имеет публичный адрес, который можете просмотреть либо на роутере, либо на специальных сайтах, например 2ip.ru. Но в вашем случае под одним IP адресом в Интернет могут выходить 10, 50, 100 пользователей из вашей же сети. Потому что на самом деле это адрес не конкретного компьютера в сети, а маршрутизатора, через который вы выходите в сеть. Публичные адреса должны быть уникальны в пределах всего Интернета. Приватные же адреса это такой тип адресов, которые используют в пределах одной локальной сети и не маршрутизируются в Интернет. Существуют следующие диапазоны приватных IP адресов: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255. Посмотреть свой локальный приватный адрес можете либо в свойствах сетевого адаптера, либо в командной строке набрав команду ipconfig. В начале зарождения Интернета IP адреса было принято делить на классы: Класс Начальный IP Конечный IP Число сетей Число хостов Класс A 0.0.0.0 127.255.255.255 126 16777214 Класс B 128.0.0.0 191.255.255.255 16382 65536 Класс C 192.0.0.0 223.255.255.255 2097150 254 Класс D 224.0.0.0 239.255.255.255 Класс E 240.0.0.0 254.255.255.255 При этом адрес 0.0.0.0 зарезервирован, он назначается хосту, когда он только что подключен к сети и не имеет IP адреса. Если в сети имеется DHCP сервер, то хост в качестве адреса источника отправляет адрес 0.0.0.0. Адрес 255.255.255.255 это широковещательный адрес. А адреса начинающиеся на 127 зарезервированы для так называемой loopback адресации. Адреса класса D зарезервированы для мультикаст соединений, адреса класса E для исследований (не только крысы страдают от исследований). IP адрес хоста имеет две части адрес сети и адрес узла. Где адрес сети, а где адрес узла - определяется маской сети. Маска сети это 32-битное число, где подряд идущие биты всегда равны 1. На самом деле каждое десятичное число IP адреса - это не что иное, как сумма степеней числа 2. Например, 192 это 1100000. Чтобы получить это значение переводим десятичное число в двоичное. Хотя это азы информатики, но подойдет любой калькулятор, даже встроенный в Windows: А теперь посмотрим как мы получаем 192 из суммы степеней двойки: 1 * 27+1*26+0*25+0*24+0*23+0*27+0*21+0*20 = 1*27+1*26 = 128 + 64 = 192. И так каждый октет может включать в себя следующие числа: 128 64 32 16 8 4 2 1. Если в IP адресе есть место одной из указанных чисел, то в двоичном представлении на месте этого числа подставляется 1, если нет 0. В маске сети все подряд идущие биты должны быть равны 1. Первый октет Второй октет Третий октет Четвёртый октет 255 255 255 0 11111111 11111111 11111111 00000000 Принадлежность адреса классу определяется по первым битам. Для сетей класса A первый бит всегда равен 0, для класса B 10, для класса С 110. При классовой адресации за каждым классом закреплена своя маска подсети. Для класса А это 255.0.0.0, класса B 255.255.0.0, а для класса C 255.255.255.0. Но со временем стало ясно, что классовая адресация не оптимально использует существующие адреса. Поэтому перешли на бесклассовую адресацию, так называемую Classless Inter-Domain Routing (CIDR), где любой подсети можно задать любую маску. Отличную от стандартной. При это, маску подсети можно увеличивать, но никак не уменьшать. Наверное не раз встречали адреса типа 10.10.121.25 255.255.255.0. Этот адрес по сути является адресом класса А, но маска относится к классу C. Но даже в случае бесклассовой адресации наблюдается перерасход IP адресов. В маленьких сетях, где всего один отдел с 40-50 компьютерами это не очень заметно. Но в больших сетях, где нужно каждому отделу выделить свой диапазон IP адресов этот вопрос стоит боком. Например, бухгалтерии вы выделили сеть с адресом 192.168.1.0/24, а там всего 25 хостов. В указанной сети же 254 адресов. Значит 229 адреса остаются не используемыми. На самом деле здесь 256 адресов, но первый 192.168.1.0 является адресом сети, а последний 192.168.1.255 широковещательнымадресом. Итого в распоряжении администратора всего 254 адреса. Существует формула расчета количества хостов в указанной сети. Выглядит она следующим образом: H=2n 2 Где H число хостов, n число бит отведенных под номер хоста. Например, 192.168.1.0 маска 255.255.255.0. Здесь первый 24 бит определяют номер сети, а оставшиеся 8 бит номер хоста. Исходя из этого, H=28-2 = 254. Тут и вспоминаем про деление сетей на подсети. Кроме экономии адресного пространства, сабнеттинг дает еще и дополнительную безопасность. Трафик между сетями с разной маской не ходит, а значит пользователи одной подсети не смогут прослушать трафик пользователей в другой. Это еще и упрощает управление разрешениями в сети, так как можно назначать списки доступа и тем самым ограничивать доступ пользователей в критически важные сегменты сети. С другой стороны, сегментирование сети позволяет увеличивать количество широковещательных доменов, уменьшая при этом сам широковещательный трафик. В сегментировании сети используется такой подход как маска подсети с переменной длиной VLSM (Variable Length Subnet Mask). Суть состоит в том, что вам выделяют диапазон IP адресов, и вы должны распределить их так, чтобы никто не мог проснифить трафик другого и всем досталось хотя бы по одному адресу. Выделением блоков IP адресов занимается организация IANA (Internet Assigned Numbers Authority ). Она делегирует права региональным регистраторам, которые в свою очередь выделяют блоки адресов национальным. Например, региональным регистратором для Европы является RIPE. А последние в свою очередь делят адреса, имеющиеся у них, между провайдерами. Например, нам выделили адрес 192.168.25.0 с маской подсети 255.255.255.0. Маску подсети можно указывать сокращенно: 192.168.25.0/24. 24 это число единиц в маске. Нам как администраторам предприятия предстоит разделить их между четырьмя отделами, в которых по 50 хостов. Начинаем вычисления. Нам нужно 5 * 50 = 250 уникальных адресов. Но основная задача, пользователи должны быть в разных подсетях. Значит необходимо четыре подсети. Для определения количества подсетей в сети есть специальная формула: N = 2n Где N число подсетей, а n число бит заимствованных из хостовой части IP адреса. В нашем случае мы пока не позаимствовали ничего значить подсеть всего одна: 20 = 1. Нам же нужно четыре подсети. Простая математика нам подсказывает, что должны позаимствовать минимум 2 бита: 22 = 4. Итак, маска у нас становиться 255.255.255.192 или /26. Остальные 6 битов нам дают количество адресов равных 64 для каждой подсети, из которых доступны 62 адреса, что полностью покрывает нужду наших подсетей: Сеть № Число хостов Маска подсети Первый IP Последний IP Номер подсети Широковещательный адрес Сеть 1 50 255.255.255.192 192.168.25.1 192.168.25.62 192.168.25.0 192.168.25.63 Сеть 2 50 255.255.255.192 192.168.25.65 192.168.25.126 192.168.25.64 192.168.25.127 Сеть 3 50 255.255.255.192 192.168.25.129 192.168.25.190 192.168.25.128 192.168.25.191 Сеть 4 50 255.255.255.192 192.168.25.193 192.168.25.254 192.168.25.192 192.168.25.255 Тестировать будем в виртуальной среде Cisco Packet Tracer. Как видно из рисунка, здесь три разных хоста маски у всех одинаковые, но маршруты по умолчанию разные. По умолчанию, трафик между всеми этими подсетями идет, так как у нас в сети существует маршрутизатор, который занимается передачей трафика из одной подсети в другую. Чтобы ограничить трафик нужно прописать соответствующие списки доступа Access Lists. Но мы не будем заниматься этим сейчас, так как тема статьи совсем другая. Чтобы определить к какой подсети относится хост, устройство выполняет операцию побитового "И" между адресом узла и маской подсети. Побитовое "И" это бинарная операция, действие которой эквивалентно применению логического "И" к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если оба соответствующих бита операндов равны 1, результирующий двоичный разряд равен 1; если же хотя бы один бит из пары равен 0, результирующий двоичный разряд равен 0.Покажем на примере: 192 168 1 125 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 255 255 255 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 192 168 1 0 На рисунке выше маска подсети для всех сетей одинаковая 255.255.255.192. Но давайте представим ситуацию, когда у нас подсетей так же 4, но количество хостов разное: Сеть 1 120 Сеть 2 60 Сеть 3 25 Сеть 4 12 В принципе, можно оставить и предыдущую маску, но мы провайдер, у нас много клиентов и мы не можем позволить себе тратить IP адреса впустую. Итак, в первой сети на нужно 120 IP адресов, значит маска сети должна быть где-то в районе 120. Мы могли бы выбрать маской 120, но это невозможно, так как 120 не является степенью двойки, поэтому выбираем 128. Для второй подсети первая доступная маска 64. Но так как первые 128 адресов выделены под Сеть 1, то выбираем следующие 64 адреса, а маска будет 192, потому что именно эта маска даст нам нужное количество адресов. Третья сеть у нас состоит из 25 хостов. Ближайший возможный блок адресов это 32. А маска 224 как раз даст эти 32 адреса. В четвёртой же сети нам нужно 16 адресов. Маска будет равна 240. Лайфхак: Чтобы быстро вычислить маску подсети из количества доступных адресов вычитываем необходимое. Например, в этой подсети 256 адресов, нам нужно 32 адреса. Производим простое вычисление: 256 32 = 224. Это число и будет в последнем октете. Сеть № Число хостов Маска подсети Первый IP Последний IP Номер подсети Широковещательный адрес Сеть 1 120 255.255.255.128 192.168.25.1 192.168.25.126 192.168.25.0 192.168.25.127 Сеть 2 60 255.255.255.192 192.168.25.129 192.168.25.190 192.168.25.128 192.168.25.191 Сеть 3 25 255.255.255.224 192.168.25.193 192.168.25.222 192.168.25.192 192.168.25.223 Сеть 4 12 255.255.255.240 192.168.25.225 192.168.25.238 192.168.25.224 192.168.25.239 А сейчас каждому интерфейсу маршрутизатора присвоен IP подсетей с масками разной длины. При этом в каждой подсети у нас остались как минимум 2 свободных адреса на случай добавления новых хостов. На самом деле в сети уже есть готовые таблицы, где уже произведены все подсчеты и прописаны маски для разных сетей. Но умение самому вычислять не помешает, так как на экзаменах по сетевой сертификации попадаются такие задания.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59