По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Допустим нам нужно отправить почтой посылку куда-то в Лондон. Что мы делаем? Идем в почту, берём специальный бланк и заполняем соответствующие поля. Отправитель Вася Пупкин, адрес: ул. Тверская, дом 40, кв. 36., Москва, Россия. Кому: Шерлок Холмс, Baker Street 221B, London, United Kingdom. То есть мы отправили посылку конкретному лицу, проживающему по конкретному адресу. Как и в реальном мире, в мире информационных технологий тоже есть своя адресация. В данном случае получателем выступает компьютер, за которым закреплён соответствующий IP адрес. IP aдрес это уникальный идентификатор устройства, подключённого к локальной сети или интернету. p> Видео про IP - адрес На данный момент существуют две версии IP адресов: IP версии 4 (IPv4) и IP версии 6 (IPv6). Смысл создания новой версии заключается в том, что IP адреса в 4-ой версии уже исчерпаны. А новые устройства в сети появляются с огромной скоростью и им всем нужно выделать свой уникальный адрес. IPv4 представляет собой 32-битное двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. Но так как компьютеры понимают только двоичную систему исчисления, то указанный адрес преобразуют в двоичную форму - 11000000 10101000 00000000 00000000. Длина же IPv6 адресов равна 128-битам. IPv6 адрес представляется в виде строки шестнадцатеричных цифр, разделенной двоеточиями на восемь групп, по 4 шестнадцатеричных цифрр в каждой. Например: 2003:00af:café:3daf:1000:edaf:1001:afad. Каждая группа равна 16 битам в двоичном представлении. IP адреса принято делить на публичные и приватные. Публичный адрес это адрес, который виден в Интернете. Все сайты в глобальной сети имеют публичный или "белый" IP адрес. Для merionet.ru он равен 212.193.249.136. Да и ваш компьютер тоже имеет публичный адрес, который можете просмотреть либо на роутере, либо на специальных сайтах, например 2ip.ru. Но в вашем случае под одним IP адресом в Интернет могут выходить 10, 50, 100 пользователей из вашей же сети. Потому что на самом деле это адрес не конкретного компьютера в сети, а маршрутизатора, через который вы выходите в сеть. Публичные адреса должны быть уникальны в пределах всего Интернета. Приватные же адреса это такой тип адресов, которые используют в пределах одной локальной сети и не маршрутизируются в Интернет. Существуют следующие диапазоны приватных IP адресов: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255. Посмотреть свой локальный приватный адрес можете либо в свойствах сетевого адаптера, либо в командной строке набрав команду ipconfig. В начале зарождения Интернета IP адреса было принято делить на классы: Класс Начальный IP Конечный IP Число сетей Число хостов Класс A 0.0.0.0 127.255.255.255 126 16777214 Класс B 128.0.0.0 191.255.255.255 16382 65536 Класс C 192.0.0.0 223.255.255.255 2097150 254 Класс D 224.0.0.0 239.255.255.255 Класс E 240.0.0.0 254.255.255.255 При этом адрес 0.0.0.0 зарезервирован, он назначается хосту, когда он только что подключен к сети и не имеет IP адреса. Если в сети имеется DHCP сервер, то хост в качестве адреса источника отправляет адрес 0.0.0.0. Адрес 255.255.255.255 это широковещательный адрес. А адреса начинающиеся на 127 зарезервированы для так называемой loopback адресации. Адреса класса D зарезервированы для мультикаст соединений, адреса класса E для исследований (не только крысы страдают от исследований). IP адрес хоста имеет две части адрес сети и адрес узла. Где адрес сети, а где адрес узла - определяется маской сети. Маска сети это 32-битное число, где подряд идущие биты всегда равны 1. На самом деле каждое десятичное число IP адреса - это не что иное, как сумма степеней числа 2. Например, 192 это 1100000. Чтобы получить это значение переводим десятичное число в двоичное. Хотя это азы информатики, но подойдет любой калькулятор, даже встроенный в Windows: А теперь посмотрим как мы получаем 192 из суммы степеней двойки: 1 * 27+1*26+0*25+0*24+0*23+0*27+0*21+0*20 = 1*27+1*26 = 128 + 64 = 192. И так каждый октет может включать в себя следующие числа: 128 64 32 16 8 4 2 1. Если в IP адресе есть место одной из указанных чисел, то в двоичном представлении на месте этого числа подставляется 1, если нет 0. В маске сети все подряд идущие биты должны быть равны 1. Первый октет Второй октет Третий октет Четвёртый октет 255 255 255 0 11111111 11111111 11111111 00000000 Принадлежность адреса классу определяется по первым битам. Для сетей класса A первый бит всегда равен 0, для класса B 10, для класса С 110. При классовой адресации за каждым классом закреплена своя маска подсети. Для класса А это 255.0.0.0, класса B 255.255.0.0, а для класса C 255.255.255.0. Но со временем стало ясно, что классовая адресация не оптимально использует существующие адреса. Поэтому перешли на бесклассовую адресацию, так называемую Classless Inter-Domain Routing (CIDR), где любой подсети можно задать любую маску. Отличную от стандартной. При это, маску подсети можно увеличивать, но никак не уменьшать. Наверное не раз встречали адреса типа 10.10.121.25 255.255.255.0. Этот адрес по сути является адресом класса А, но маска относится к классу C. Но даже в случае бесклассовой адресации наблюдается перерасход IP адресов. В маленьких сетях, где всего один отдел с 40-50 компьютерами это не очень заметно. Но в больших сетях, где нужно каждому отделу выделить свой диапазон IP адресов этот вопрос стоит боком. Например, бухгалтерии вы выделили сеть с адресом 192.168.1.0/24, а там всего 25 хостов. В указанной сети же 254 адресов. Значит 229 адреса остаются не используемыми. На самом деле здесь 256 адресов, но первый 192.168.1.0 является адресом сети, а последний 192.168.1.255 широковещательнымадресом. Итого в распоряжении администратора всего 254 адреса. Существует формула расчета количества хостов в указанной сети. Выглядит она следующим образом: H=2n 2 Где H число хостов, n число бит отведенных под номер хоста. Например, 192.168.1.0 маска 255.255.255.0. Здесь первый 24 бит определяют номер сети, а оставшиеся 8 бит номер хоста. Исходя из этого, H=28-2 = 254. Тут и вспоминаем про деление сетей на подсети. Кроме экономии адресного пространства, сабнеттинг дает еще и дополнительную безопасность. Трафик между сетями с разной маской не ходит, а значит пользователи одной подсети не смогут прослушать трафик пользователей в другой. Это еще и упрощает управление разрешениями в сети, так как можно назначать списки доступа и тем самым ограничивать доступ пользователей в критически важные сегменты сети. С другой стороны, сегментирование сети позволяет увеличивать количество широковещательных доменов, уменьшая при этом сам широковещательный трафик. В сегментировании сети используется такой подход как маска подсети с переменной длиной VLSM (Variable Length Subnet Mask). Суть состоит в том, что вам выделяют диапазон IP адресов, и вы должны распределить их так, чтобы никто не мог проснифить трафик другого и всем досталось хотя бы по одному адресу. Выделением блоков IP адресов занимается организация IANA (Internet Assigned Numbers Authority ). Она делегирует права региональным регистраторам, которые в свою очередь выделяют блоки адресов национальным. Например, региональным регистратором для Европы является RIPE. А последние в свою очередь делят адреса, имеющиеся у них, между провайдерами. Например, нам выделили адрес 192.168.25.0 с маской подсети 255.255.255.0. Маску подсети можно указывать сокращенно: 192.168.25.0/24. 24 это число единиц в маске. Нам как администраторам предприятия предстоит разделить их между четырьмя отделами, в которых по 50 хостов. Начинаем вычисления. Нам нужно 5 * 50 = 250 уникальных адресов. Но основная задача, пользователи должны быть в разных подсетях. Значит необходимо четыре подсети. Для определения количества подсетей в сети есть специальная формула: N = 2n Где N число подсетей, а n число бит заимствованных из хостовой части IP адреса. В нашем случае мы пока не позаимствовали ничего значить подсеть всего одна: 20 = 1. Нам же нужно четыре подсети. Простая математика нам подсказывает, что должны позаимствовать минимум 2 бита: 22 = 4. Итак, маска у нас становиться 255.255.255.192 или /26. Остальные 6 битов нам дают количество адресов равных 64 для каждой подсети, из которых доступны 62 адреса, что полностью покрывает нужду наших подсетей: Сеть № Число хостов Маска подсети Первый IP Последний IP Номер подсети Широковещательный адрес Сеть 1 50 255.255.255.192 192.168.25.1 192.168.25.62 192.168.25.0 192.168.25.63 Сеть 2 50 255.255.255.192 192.168.25.65 192.168.25.126 192.168.25.64 192.168.25.127 Сеть 3 50 255.255.255.192 192.168.25.129 192.168.25.190 192.168.25.128 192.168.25.191 Сеть 4 50 255.255.255.192 192.168.25.193 192.168.25.254 192.168.25.192 192.168.25.255 Тестировать будем в виртуальной среде Cisco Packet Tracer. Как видно из рисунка, здесь три разных хоста маски у всех одинаковые, но маршруты по умолчанию разные. По умолчанию, трафик между всеми этими подсетями идет, так как у нас в сети существует маршрутизатор, который занимается передачей трафика из одной подсети в другую. Чтобы ограничить трафик нужно прописать соответствующие списки доступа Access Lists. Но мы не будем заниматься этим сейчас, так как тема статьи совсем другая. Чтобы определить к какой подсети относится хост, устройство выполняет операцию побитового "И" между адресом узла и маской подсети. Побитовое "И" это бинарная операция, действие которой эквивалентно применению логического "И" к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если оба соответствующих бита операндов равны 1, результирующий двоичный разряд равен 1; если же хотя бы один бит из пары равен 0, результирующий двоичный разряд равен 0.Покажем на примере: 192 168 1 125 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 255 255 255 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 192 168 1 0 На рисунке выше маска подсети для всех сетей одинаковая 255.255.255.192. Но давайте представим ситуацию, когда у нас подсетей так же 4, но количество хостов разное: Сеть 1 120 Сеть 2 60 Сеть 3 25 Сеть 4 12 В принципе, можно оставить и предыдущую маску, но мы провайдер, у нас много клиентов и мы не можем позволить себе тратить IP адреса впустую. Итак, в первой сети на нужно 120 IP адресов, значит маска сети должна быть где-то в районе 120. Мы могли бы выбрать маской 120, но это невозможно, так как 120 не является степенью двойки, поэтому выбираем 128. Для второй подсети первая доступная маска 64. Но так как первые 128 адресов выделены под Сеть 1, то выбираем следующие 64 адреса, а маска будет 192, потому что именно эта маска даст нам нужное количество адресов. Третья сеть у нас состоит из 25 хостов. Ближайший возможный блок адресов это 32. А маска 224 как раз даст эти 32 адреса. В четвёртой же сети нам нужно 16 адресов. Маска будет равна 240. Лайфхак: Чтобы быстро вычислить маску подсети из количества доступных адресов вычитываем необходимое. Например, в этой подсети 256 адресов, нам нужно 32 адреса. Производим простое вычисление: 256 32 = 224. Это число и будет в последнем октете. Сеть № Число хостов Маска подсети Первый IP Последний IP Номер подсети Широковещательный адрес Сеть 1 120 255.255.255.128 192.168.25.1 192.168.25.126 192.168.25.0 192.168.25.127 Сеть 2 60 255.255.255.192 192.168.25.129 192.168.25.190 192.168.25.128 192.168.25.191 Сеть 3 25 255.255.255.224 192.168.25.193 192.168.25.222 192.168.25.192 192.168.25.223 Сеть 4 12 255.255.255.240 192.168.25.225 192.168.25.238 192.168.25.224 192.168.25.239 А сейчас каждому интерфейсу маршрутизатора присвоен IP подсетей с масками разной длины. При этом в каждой подсети у нас остались как минимум 2 свободных адреса на случай добавления новых хостов. На самом деле в сети уже есть готовые таблицы, где уже произведены все подсчеты и прописаны маски для разных сетей. Но умение самому вычислять не помешает, так как на экзаменах по сетевой сертификации попадаются такие задания.
img
Привет! Сегодня в статье рассказываем про внутреннее устройство маршрутизатора Cisco Маршрутизатор состоит из нескольких типов компонентов. Например, в любом маршрутизаторе Cisco есть 4 типа памяти и 2 типа портов. К основным компонентам любого маршрутизатора Cisco относится: Память ROM FLASH RAM NV-RAM Порты (интерфейсы и линии) CLI (Command Line Interface) ROM – это память, которая содержит программу (ROM - monitor) для начальной загрузки и самотестирования. Когда маршрутизатор включается, происходит диагностика аппаратного обеспечения специальной программой, называемой Power On Self Test (POST). Если эта диагностика не выявила ошибок, то далее загружается и запускается IOS из флэш-памяти. Флэш-память является перезаписываемой. Это позволяет обновлять IOS маршрутизатора Cisco. Если загрузчик не найден во флэш-памяти IOS, то ROM загружается с временной версией IOS. ROM нельзя переписать или стереть. Это постоянное запоминающее устройство (ПЗУ). Если IOS находится во флэш-памяти, то она загружается в оперативную память (RAM). После этого загрузчик находит файл конфигурации запуска в NVRAM. NVRAM-энергонезависимая оперативная память, поэтому ее содержимое не стирается. Если IOS не находит файл конфигурации запуска, она пытается загрузить файл конфигурации с сервера TFTP. Если сервер TFTP также не отвечает, то IOS переводится в режим начальной настройки устройства. В этом режиме пользователям задаются вопросы, которые позволяют быстро настроить маршрутизатор. Если IOS получает файл конфигурации запуска в NVRAM, то он загружается в оперативную память и становится файлом загрузочной конфигурации. Давайте более подробно рассмотрим назначение каждого компонента маршрутизатора Память Как было уже упомянуто, существует 4 типа памяти в Cisco IOS, которые приведены ниже: ROM - это память только для чтения. Она встроена в маршрутизатор. В плату вшита специальная программа-загрузчик, которая выполняет самотестирование. Это называется режимом мониторинга ROM. Когда маршрутизатор не может найти IOS, он загружается из ROM. FLASH - по умолчанию маршрутизатор определяет наличие флэш-памяти для загрузки IOS и, если она есть и рабочая, то далее происходит загрузка IOS в эту память. Это электронная перезаписываемая программируемая память. RAM - она также называется динамической оперативной памятью (random access memory). Оперативная память — это рабочая область процессора маршрутизатора Cisco. В этой памяти хранятся текущий конфигурационный файл и таблицы маршрутизации. NV-RAM - она называется энергонезависимой оперативной памятью. В NVRAM хранится файл конфигурации запуска, который используется для запуска системы. Порты Cisco IOS имеет интерфейсы и линейные входы двух типов. Интерфейсы соединяют маршрутизатор с другими устройствами, такими как маршрутизаторы и коммутаторы. Данные в сети проходят через эти порты. Ниже приводятся названия некоторых распространенных интерфейсов: Serial interface Ethernet interface Fast Ethernet interface Gigabit Ethernet interface Интерфейсы идентифицируются по их названию и номеру. Например, первый интерфейс FastEthernet известен как FastEthernet0/0. Некоторые семейства маршрутизаторов являются модульными, поэтому интерфейсы в них организованы в слоты. Поэтому, наряду с номером интерфейса, записывается и номер слота. Таким образом, вы можете ввести 2 интерфейса первого слота. Пример: i) FastEthernet0/2 Для настройки маршрутизатора используются отдельные (специальные) порты. Они называются линейными. Ниже приводятся названия некоторых таких портов: Console ports Auxiliary ports VTY ports USB ports Подобно интерфейсам, линейные входы также идентифицируются по типу линии и номеру линии. Так что, на первом консольном порту будет написано что-то вроде этого: Console0 Command Line Interface (CLI) IOS предоставляет интерфейс командной строки для взаимодействия с маршрутизатором Cisco. Интерфейс командной строки является единственным вариантом для настройки и управления устройствами Cisco. Вы можете получить к нему доступ через консоль или telnet-соединение. В CLI можно вводить команды и выполнять их. Этапы загрузки Маршрутизатора Каждое устройство Cisco при включении проходит определенные этапы загрузки. Эти этапы показаны ниже: Включается маршрутизатор. Загрузчик загружается из ROM Загрузчик запускает POST Загрузчик пытается загрузить IOS из флэш-памяти - Если IOS недоступна во флэш-памяти, то загружается базовая IOS из загрузочного ПЗУ. Если IOS находится во флэш-памяти, она загружается в оперативную память. IOV NVRAM пытается загрузить файл конфигурации запуска (startup config)- Если файл конфигурации запуска не найден в NVRAM, тогда IOS пытается загрузить файл конфигурации с сервера TFTP. Если сервер TFTP не отвечает, то маршрутизатор переходит в режим начальной конфигурации. Если файл конфигурации запуска находится в NVRAM, то он загружается в оперативную память. Конфигурация запуска записывается в оперативную память.
img
Привет! В сегодняшней статье я опишу как «расшарить» папку на CentOS сервере – то есть предоставить ей общий доступ без указания пароля. Сделать это возможно с помощью установки сервера Samba и нескольких дополнительных манипуляций. Доступ будет производиться по протоколу SMB/CIFS (Server Message Block/Common Internet File System Установка Перед установкой необходимо понять, в каком статусе у вас находится SELinux – для этого нужно выполнить команду selinuxenables && echo enabled || echo disabled. В случае если результат такой же, как на скриншоте ниже – можете смело приступать непосредственно к самому процессу установки (ниже): В противном случае, вам необходимо будет его отключить – для этого откройте конфигурационный файл по пути /etc/selinux/config любым текстовым редактором – например, Vi - vi /etc/selinux/config и поставьте значение SELINUX в положение disabled и выполните перезагрузку системы командой reboot SELinux – дополнение к стандартной системе контроля доступа Linux, но его настройка довольна трудоёмка и оно включено по умолчанию. Без каких-либо манипуляций SELinux часто может блокировать изменения, вызываемые при запуске различных служб или программ. Далее приступаем к установке Samba сервера. Для этого нужно выполнить команду: yum install samba samba-common cups-libs samba-client Теперь создадим папку – вводим команду mkdir –p /root/SHAREDFOLDER (имя папки и директория, соответственно, могут быть произвольными). Далее устанавливаем на неё права: chown –R root:users /root/SHAREDFOLDER chmod –R 775 /root/SHAREDFOLDER Конфигурация Открываем текстовым редактором основный файл конфигурации Samba – воспользуемся Vi: vi /etc/samba/smb.conf. В данном файле необходимо проверить чтобы в секции global присутствовали следующие строки: [global] security = user passdb backend = tdbsam workgroup = MYGROUP map to guest = Bad User server string = Samba Server Version %v Затем закомментируйте (проставьте точку с запятой) перед аргументами в разделах [homes] (доступ к гостевым директориям) и в [printers] (доступ к принтерам). Теперь добавьте конфиг для вашей созданной папке, выглядеть это должно следующим образом: [SHAREDFOLDER] comment = Everybody has access path = /root/SHAREDFOLDER force group = users create mask = 0666 directory mask = 0777 writable = yes guest ok = yes browseable = yes Наконец, сохраним файл конфигурации и настроим автозапуск службы samba – для этого необходимо выполнить следующую команду: chkconfig –levels 235 smb on /etc/init.d/smb restart Помните – Samba использует порты 137, 138, 139 и 445. Эта информация вам может понадобится при пробросе портов и настройке iptables. Благодаря вышеописанной процедуре, вы сможете легко передавать файлы с сервера на рабочие машины в вашей сети, и, более того, решать многие прикладные задачи – к примеру, расшарить папку с записями разговоров, чтобы непосредственно иметь к ним доступ.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59