По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Алгоритм – это набор четко сформулированных инструкций, который применяется для решения конкретной задачи. Эти задачи вы можете решать любым удобным для вас способом.  Это значит, что ваш метод, который вы используете для решения задачи, может отличаться от моего, но при этом мы оба должны получить один и тот же результат.  Так как способ решения одной и той же задачи может быть не один, то должен существовать и способ оценить эти решения или алгоритмы с точки зрения оптимальности и эффективности (время, которое требуется для запуска/выполнения вашего алгоритма, и общий объем потребляемой памяти). Этот этап довольно важный для программистов. Его цель - помочь убедиться, что их приложения работают должным образом, и помочь написать чистый программный код.  И вот здесь на первый план выходит обозначение «О большое». «О большое» - это метрика, которая определяет эффективность алгоритма. Она позволяет оценить, сколько времени занимает выполнение программного кода с различными входными данными, и измерить, насколько эффективно этот программный код масштабируется по мере увеличения размера входных данных.  Что такое «О большое»? «О большое» показывает сложность алгоритма для наихудшего случая. Для описания сложности алгоритма здесь используются алгебраические выражения.  «О большое» определяет время выполнения алгоритма, показывая, как будет меняться оптимальность алгоритма по мере увеличения размера входных данных. Однако этот показатель не расскажет вам о том, насколько быстро работает ваш алгоритм.  «О большое» измеряет эффективность и оптимальность алгоритма, основываясь на временной и пространственной сложности.    Что такое временная и пространственная сложность? Один из самых основных факторов, который влияет на оптимальность и эффективность вашей программы – это оборудование, ОС и ЦП, которые вы используете.  Однако при анализе оптимальности алгоритма это не учитывается. Куда важнее учесть временную и пространственную сложность как функцию, которая зависит от размера входных данных.  Временная сложность алгоритма – это то, сколько времени потребуется для выполнения алгоритма в зависимости от размера входных данных. Аналогично пространственная сложность – это то, сколько пространства или памяти потребуется для выполнения алгоритма в зависимости от размера входных данных.  В данной статье мы рассмотрим временную сложность. Эта статья станет для вас своего рода шпаргалкой, которая поможет вам понять, как можно рассчитать временную сложность для любого алгоритма. Почему временная сложность зависит от размера входных данных? Для того, чтобы полностью понять, что же такое «зависимость от входных данных», представьте, что у вас есть некий алгоритм, который вычисляет сумму чисел, основываясь на ваших входных данных. Если вы ввели 4, то он сложит 1+2+3+4, и на выходе получится 10; если вы ввели 5, то на выходе будет 15 (то есть алгоритм сложил 1+2+3+4+5). const calculateSum = (input) => {  let sum = 0;  for (let i = 0; i <= input; i++) {    sum += i;  }  return sum; }; В приведенном выше фрагменте программного кода есть три оператора: Давайте посмотрим на картинку выше. У нас есть три оператора. При этом, так как у нас есть цикл, то второй оператор будет выполняться, основываясь на размере входных данных, поэтому, если на входе алгоритм получает 4, то второй оператор будет выполняться четыре раза. А значит, в целом алгоритм выполнится шесть (4+2) раз.  Проще говоря, алгоритм будет выполняться input+2 раза; input может быть любым числом. Это говорит о том, что алгоритм выражается в терминах входных данных. Иными словами, это функция, которая зависит от размера входных данных.  Для понятия «О большое» есть шесть основных типов сложностей (временных и пространственных): Постоянное время: O1 Линейное время: On Логарифмическое время: On log n  Квадратичное время: On2 Экспоненциальное время: O2n Факториальное время: On! Прежде чем мы перейдем к рассмотрению всех этих временных сложностей, давайте посмотрим на диаграмму временной сложности «О большого».  Диаграмма временной сложности «О большого» Диаграмма «О большого» - это асимптотические обозначение, которое используется для выражения сложности алгоритма или его оптимальности в зависимости от размера входных данных.  Данная диаграмма помогает программистам определить сценарий наихудшего случая, а также оценить время выполнения и объем требуемой памяти.  Следующий график иллюстрирует сложность «О большого»:  Глядя на приведенную выше диаграмму, можно определить, что O1 – постоянное время выполнения алгоритма, является наилучшим вариантом. Это означает, что ваш алгоритм обрабатывает только один оператор без какой-либо итерации. Дальше идет Olog n , что тоже является неплохим вариантом, и другие: O1 – отлично/наилучший случай Olog n  – хорошо On – удовлетворительно On log n  – плохо On2, O2n, On! – ужасно/наихудший случай Теперь вы имеете представление о различных временных сложностях, а также можете понять, какие из них наилучшие, хорошие или удовлетворительные, а какие плохие и наихудшие (плохих и наихудших временных сложностей следует избегать). Следующий вопрос, который может прийти на ум: «какой алгоритм какую сложность имеет?» И это вполне логичный вопрос, ведь эта статья задумывалась как шпаргалка. ?  Когда ваши расчеты не зависят от размера входных данных, то это постоянная временная сложность - O1. Когда размер входных данных уменьшается в два раза, например, при итерации, обработке рекурсии и т.д., то это логарифмическая временная сложность - Olog n . Когда у вас один цикл в алгоритме, то это линейная временная сложность - On. Когда у вас есть вложенные циклы, то есть цикл в цикле, то это квадратичная временная сложность - On2. Когда скорость роста удваивается при каждом добавлении входных данных, то это экспоненциальная временная сложность - O2n. Давайте перейдем к описанию временных сложностей. Для каждой будут приведены примеры. Отмечу, что в примерах я использовал JavaScript, но если вы понимаете принцип и что из себя представляет каждая временная сложность, то не имеет значения, какой язык программирования вы выберите.  Примеры временных сложностей «О большого» Постоянное время: O1 Когда алгоритм не зависит от размера входных данных n, то говорят, что он имеет постоянную временную сложность порядка O1. Это значит, что время выполнения алгоритма всегда будет одним и тем же, независимо от размера входных данных.  Допустим, что задача алгоритма – вернуть первый элемент массива. Даже если массив состоит из миллиона элементов, временная сложность будет постоянной, если использовать следующий подход для решения задачи: const firstElement = (array) => {  return array[0]; }; let score = [12, 55, 67, 94, 22]; console.log(firstElement(score)); // 12 Приведенная выше функция выполняет лишь один шаг, а это значит, что функция работает за постоянное время, и ее временная сложность O1.  Однако, как уже было сказано, разные программисты могут найти разные способы решения задачи. Например, другой программист может решить, что сначала надо пройти по массиву, а затем уже вернуть первый элемент: const firstElement = (array) => {  for (let i = 0; i < array.length; i++) {    return array[0];  } }; let score = [12, 55, 67, 94, 22]; console.log(firstElement(score)); // 12 Это просто пример – вряд ли кто-то будет решать эту задачу таким способом. Но здесь уже есть цикл, а значит алгоритм не будет выполняться за постоянное время, здесь в игру вступает линейное время с временной сложностью On. Линейное время: On Линейная временная сложность возникает, когда время работы алгоритма увеличивается линейно с размером входных данных. Когда функция имеет итерацию по входному значению n, то говорят, что она имеет временную сложность порядка On. Допустим, алгоритм должен вычислить и вернуть факториал любого числа, которое вы введете. Это значит, что если вы введете число 5, то алгоритм должен выполнить цикл и умножить 1·2·3·4·5, а затем вывести результат – 120: const calcFactorial = (n) => {  let factorial = 1;  for (let i = 2; i <= n; i++) {    factorial = factorial * i;  }  return factorial; }; console.log(calcFactorial(5)); // 120 Тот факт, что время выполнения алгоритма зависит от размера входных данных, подразумевает наличие линейной временной сложности порядка On. Логарифмическое время: Olog n  Это чем-то похоже на линейную временную сложность. Однако здесь время выполнения зависит не от размера входных данных, а от их половины. Когда размер входных данных уменьшается на каждой итерации или шаге, то говорят, что алгоритм имеет логарифмическую временную сложность.  Такой вариант считается вторым сверху списка лучших, так как ваша программа работает лишь с половиной входных данных. И при всем при этом, размер входных данных уменьшается с каждой итерацией.  Отличный пример – функция бинарного поиска, которая делит отсортированный массив, основываясь на искомом значения.  Допустим, что нам надо найти индекс определенного элемента в массиве с помощью алгоритма бинарного поиска: const binarySearch = (array, target) => {  let firstIndex = 0;  let lastIndex = array.length - 1;  while (firstIndex <= lastIndex) {    let middleIndex = Math.floor((firstIndex + lastIndex) / 2);    if (array[middleIndex] === target) {      return middleIndex;    }    if (array[middleIndex] > target) {      lastIndex = middleIndex - 1;    } else {      firstIndex = middleIndex + 1;    }  }  return -1; }; let score = [12, 22, 45, 67, 96]; console.log(binarySearch(score, 96)); Приведенный выше программный код демонстрирует бинарный поиск. Судя по нему, вы сначала получаете индекс среднего элемента вашего массива, дальше вы сравниваете его с искомым значением и, если они совпадают, то вы возвращаете этот индекс. В противном случае, если они не совпали, вы должны определить, искомое значение больше или меньше среднего, чтобы можно было изменить первый и последний индекс, тем самым уменьшив размер входных данных в два раза. Так как на каждой такой итерации размер входных данных уменьшается в два раза, то данный алгоритм имеет логарифмическую временную сложность порядка Olog n . Квадратичное время: On2 Когда в алгоритме присутствуют вложенные циклы, то есть цикл в цикле, то временная сложность уже становится квадратичной, и здесь нет ничего хорошего.  Представьте, что у вас есть массив из n элементов. Внешний цикл будет выполняться n раз, а внутрениий – n раз для каждой итерации внешнего цикла, и, соответственно, общее количество итераций составит n2. Если в массиве было 10 элементов, то количество итераций будет 100 (102). Ниже приведен пример, где сравниваются элементы для того, чтобы можно было вывести индекс, когда найдутся два одинаковых: const matchElements = (array) => {  for (let i = 0; i < array.length; i++) {    for (let j = 0; j < array.length; j++) {      if (i !== j && array[i] === array[j]) {        return `Match found at ${i} and ${j}`;      }    }  }  return "No matches found ?"; }; const fruit = ["?", "?", "?", "?", "?", "?", "?", "?", "?", "?"]; console.log(matchElements(fruit)); // "Match found at 2 and 8" В этом примере есть вложенный цикл, а значит, здесь будет квадратичная временная сложность порядка On2.  Экспоненциальное время: O2n Экспоненциальная временная сложность появляется, когда скорость роста удваивается с каждым добавлением входных данных n, например, когда вы обходите все подмножества входных элементов. Каждый раз, когда единицу входных данных увеличивают на один, то количество итераций, которые выполняет алгоритм, увеличиваются в два раза.  Хороший пример – рекурсивная последовательность Фибоначчи. Допустим, дано число, и необходимо найти n-ый элемент последовательности Фибоначчи.  Последовательность Фибоначчи – это математическая последовательность, в которой каждое число является суммой двух предыдущих; первые два числа – 0 и 1. Третье число – 1, четвертое – 2, пятое – 3 и т.д. (0, 1, 1, 2, 3, 5, 8, 13, …). Соответственно, если вы введете число 6, то выведется 6-й элемент в последовательности Фибоначчи – 8: const recursiveFibonacci = (n) => {  if (n < 2) {    return n;  }  return recursiveFibonacci(n - 1) + recursiveFibonacci(n - 2); }; console.log(recursiveFibonacci(6)); // 8 Приведенный выше алгоритм задает скорость роста, которая удваивается каждый раз, когда добавляются входные данные. А значит, данный алгоритм имеет экспоненциальную временную сложность порядка O2n. Заключение Из данной статьи вы узнали, что такое временная сложность, как определить оптимальность алгоритма с помощью «О большого», а также рассмотрели различные временные сложности с примерами. 
img
Сегодня хотим предложить крутой функционал, который тебе захочется установить на своей IP – АТС Asterisk прямо сейчас! Речь пойдет про отправку записи разговора на адрес электронной почты со всеми причитающимися метаданными звонка. Работает это примерно вот так: ваш сотрудник поговорил по телефону, положил трубку, после чего, ответственному по электронной почте приходит письмо с записью разговора, датой и временем звонка, а также номерами А и Б. Настроить эту «фичу» очень легко. Приступаем к настройке. Bash скрипт для Asterisk Сам по себе скрипт написан на bash. Скрипт будет инициироваться сразу после окончания звонка и в него будут переданы нужные для работы переменные. Но об этом чуть позже: #!/bin/bash dt=$(date '+%m/%d/%Y %r'); echo -e "Привет! Появилась новая запись разговоров на нашем сервере Asterisk Звонок был совершен $dt Нам позвонил этот номер - $5 Вызов принял - $7 Запись разговора во вложении " | mail -a /var/spool/asterisk/monitor/$1/$2/$3/$6 -s "Новая запись разговоров" info@merionet.ru Пробежимся по переменным, которые будут относится к звонку и будут передаваться (все кроме $dt) с Asterisk: $1 - год звонка; $2 - месяц звонка; $3 - день звонка; $4 - дата и время в формате строки; $5 - источник звонка (звонящий); $6 - имя файла аудио – записи разговора; $7 - куда был совершен вызов; $dt - генерируем дату звонка; Переходим в консоль сервера Asterisk. Первым делом создаем файл с расширением .sh в него мы поместим наш скрипт: touch /var/lib/asterisk/bin/rectoemail.sh Даем файлу нужные права и разрешения: chown asterisk:asterisk rectoemail.sh chmod 774 rectoemail.sh Теперь открываем сам файл скрипта для редактирования: vim /var/lib/asterisk/bin/rectoemail.sh И добавляем скрипт в файл. Для того, чтобы сделать это, скопируйте скрипт из статьи. В режиме редактирования через vim нажмите «o» на клавиатуре, затем нажмите правую кнопку мыши – скрипт будет добавлен в файл. После этого, нажмите Esc на клавиатуре и комбинацию :x! + Enter для сохранения изменений. Готово. Доработка в FreePBX Теперь нужно поставить наш скрипт на автоматический запуск. Переходим в раздел Settings → Advanced Settings. Убеждаемся, что параметры Display Readonly Settings и Override Readonly Settings установлены в значение Yes. Теперь находим параметр Post Call Recording Script и добавляем в его поле следующую строчку: bash /var/lib/asterisk/bin/rectoemail.sh ^{YEAR} ^{MONTH} ^{DAY} ^{TIMESTR} ^{FROMEXTEN} ^{CALLFILENAME}.^{MIXMON_FORMAT} ^{ARG3} Готово. Сохраняем настройки и переходим к тестам:
img
Микросервисы – это шаблон сервис-ориентированной архитектуры, в котором приложения создаются в виде наборов небольших и независимых сервисных единиц. Такой подход к проектированию сводится к разделению приложения на однофункциональные модули с четко прописанными интерфейсами. Небольшие команды, управляющие всем жизненным циклом сервиса могут независимо развертывать и обслуживать микросервисы. Термин «микро» относится к размеру микросервиса – он должен быть удобным в управлении одной командой разработчиков (5-10 специалистов). В данной методологии большие приложения делятся на крошечные независимые блоки. Что такое монолитная архитектура? Если говорить простым языком, то монолитная архитектура – это как бы большой контейнер, в котором все компоненты приложения соединяются в единый пакет. В качестве примера монолитной архитектуры давайте рассмотрим сайт для электронной торговли. Например, онлайн-магазин. В любом таком приложении есть ряд типовых опций: поиск, рейтинг и отзывы, а также оплаты. Данные опции доступны клиентам через браузер или приложение. Когда разработчик сайта онлайн-магазина развертывает приложение, это считается одной монолитной (неделимой) единицей. Код различных опций (поиска, отзывов, рейтинга и оплаты) находится на одном и том же сервере. Чтобы масштабировать приложение, вам нужно запустить несколько экземпляров (серверов) этих приложений. Что такое микросервисная архитектура? Микросервисной архитектурой называется методика разработки архитектуры, позволяющая создавать приложения в виде набора небольших автономных сервисов для работы с конкретными предметными областями. Такой вариант структурированной архитектуры позволяет организовать приложения в множество слабосвязанных сервисов. Микросервисная архитектура содержит мелкомодульные сервисы и упрощенные протоколы. Давайте рассмотрим пример приложения для онлайн-торговли с микросервисной архитектурой. В данном примере каждый микросервис отвечает за одну бизнес-возможность. У «Поиска», «Оплаты», «Рейтинга и Отзывов» есть свои экземпляры (сервер), которые взаимодействуют между собой. В монолитной архитектуре все компоненты сливаются в одну модель, тогда как в микросервисной архитектуре они распределяются по отдельным модулям (микросервисам), которые взаимодействуют между собой (см. пример выше). Коммуникация между микросервисами – это взаимодействие без сохранения состояния. Каждая пара запросов и ответов независима, поэтому микросервисы легко взаимодействуют друг с другом. Микросервисная архитектура использует федеративные данные. Каждый микросервис имеет свой отдельный массив данных. Микросервисы и монолитная архитектура: сравнение Микросервисы Монолитная архитектура Каждый блок данных создается для решения определенной задачи; его размер должен быть предельно малым Единая база кода для всех бизнес-целей Запуск сервиса происходит сравнительно быстро На запуск сервиса требуется больше времени Локализовать ошибки довольно просто. Даже если один сервис сломается, другой – продолжит свою работу Локализовать ошибки сложно. Если какая-то определенная функция не перестает работать, то ломается вся система. Чтобы решить проблему, придется заново собирать, тестировать и развертывать приложение. Все микросервисы должны быть слабо связанными, чтобы изменения в одном модуле никак не влияли на другой. Монолитная архитектура тесно связана. Изменения в одному модуле кода влияет на другой Компании могут выделять больше ресурсов на самые рентабельные сервисы Сервисы не изолированы; выделение ресурсов на отдельные сервисы невозможно Можно выделить больше аппаратных ресурсов на самые популярные сервисы. В примере выше посетители чаще обращаются к каталогу товаров и поиску, а не к разделу оплат. Таким образом, будет разумнее выделить дополнительные ресурсы на микросервисы каталога товаров и поиска Масштабирование приложения – задача сложная и экономически не выгодная Микросервисы всегда остаются постоянными и доступными Большая нагрузка на инструменты для разработки, поскольку процесс необходимо запускать с нуля Федеративный доступ к данным, благодаря чему под отдельные микросервисы можно подбирать наиболее подходящую модель данных Данные централизованы Небольшие целевые команды. Параллельная и ускоренная разработка Большая команда; требуется серьезная работа по управлению командой Изменения в модели данных одного микросервиса никак не сказывается на других микросервисах Изменения в модели данных влияют на всю базу данных Четко прописанный интерфейс позволяет микросервисам эффективно взаимодействовать между собой Не предусмотрено Микросервисы делают акцент на продуктах (модулях), а не проектах Сосредоточены на проекте в целом Отсутствие перекрестных зависимостей между базами кода. Для разных микросервисов можно использовать разные технологии Одна функция или программа зависит от другой Сложности в работе с микросервисами Микросервисы полагаются друг на друга, поэтому необходимо выстроить коммуникацию между ними. В микросервисах создается больше модулей, чем в монолитных системах. Эти модули пишутся на разных языках, и их необходимо поддерживать. Микросервисы – это распределенная система, так что, по сути, мы имеем дело со сложной системой. В разных сервисах используются свои механизмы; для неструктурированных данных требуется больший объем памяти. Для предотвращения каскадных сбоев необходимо эффективное управление и слаженная командная работа. Трудно воспроизвести ошибку, если она пропадает в одной версии и вновь появляется в другой. Независимое развертывание и микросервисы – вещи слабо совместимые. Микросервисная архитектура требует большего количества операций. Сложно управлять приложением, когда в систему добавляются новые сервисы. Для поддержки всевозможных распределенных сервисов требуется большая команда опытных специалистов. Микросервисы считаются дорогостоящими решениями, поскольку для разных задач создаются и поддерживаются разные серверные пространства. Сервис-ориентированная архитектура (СОА) или микросервисы СОА-сервисы (SOA - Service-oriented architecture) поддерживаются через реестр, который считается перечнем файлов каталога. Приложения должны найти сервис в реестре и вызвать его. Иначе говоря, СОА похож оркестр: каждый музыкант играет на своем инструменте, а всеми артистами управляет дирижер. Микросервисы – это разновидность СОА-стиля. Приложения создаются в виде набора небольших сервисов, а не цельной программы. Микросервисы похожи на труппу артистов: каждый танцор знает свою программу и не зависит от других. Даже если кто-то забудет какое-то движение, вся труппа не собьется с ритма. Теперь давайте поговорим о различиях между СОА и микросервисах. Параметр СОА Микросервисы Тип проектирования В СОА компоненты приложения открыты для внешнего мира; они доступны в виде сервисов Микросервисы – это часть СОА. Такая архитектура считается реализацией СОА Зависимость Подразделения – зависимы Они не зависят друг от друга Размер приложения Размер приложения больше, чем у обычных программ Размер приложения всегда небольшой Стек технологий Стек технологий ниже, чем у микросервисов Стек технологий очень большой Сущность приложения Монолитная Полностековая Независимость и ориентированность СОА-приложения создаются для выполнения множества бизнес-задач Создаются для выполнения одной бизнес-задачи Развертывание Процесс развертывания растянут по времени Несложное развертывание, на которое тратится меньше времени Рентабельность Более рентабельно Менее рентабельно Масштабируемость Меньше, чем у микросервисов Высокая масштабируемость Бизнес-логика Компоненты бизнес-логики хранятся внутри одного сервисного домена. Простые проводные протоколы (HTTP с XML JSON). API управляется с помощью SDK/клиентов Бизнес-логика распределена между разными корпоративными доменами Микросервисные инструменты Wiremock – тестирование микросервисов WireMock – это гибкая библиотека для создания заглушек и сервисов-имитаций. В ней можно настроить ответ, который HTTP API вернет при получении определенного запроса. Также может использоваться для тестирования микросервисов. Docker Docker – это проект с открытым кодом для создания, развертывания и запуска приложений с помощью контейнеров. Использование такого рода контейнеров позволяет разработчикам запускать приложение в виде одного пакета. Кроме того, в одном пакете могут поставляться библиотеки и другие зависимости. Hystrix Hystrix – это отказоустойчивая Java-библиотека. Данный инструмент предназначен для разделения точек доступа к удаленным сервисам, системам и сторонним библиотекам в распределенной среде (микросервисах). Библиотека улучшает всю систему в целом, изолируя неисправные сервисы и предотвращая каскадный эффект от сбоев. Лучшие примеры использования микросервисной архитектуры Отдельное хранение данных для каждого микросервиса. Поддержание кода на едином уровне зрелости Отдельная сборка для каждого микросервиса. Заключение Микросервисы – это СОА-шаблон, в котором приложения создаются как набор малых и независимых серверных единиц. Микросервисная архитектура относится к стилям разработки архитектуры, позволяющим создавать приложение в виде небольших и автономных сервисов для определенных предметных областей. Монолитная архитектура похожа на большой контейнер, в котором все компоненты приложения собраны в один пакет. Каждый блок приложения в микросервисе имеет предельно малый размер и выполняет определенную функцию. Большая база кода в монолитной архитектуре замедляет процесс разработки. Выход новых версий может растянуться на месяцы. Поддерживать такую базу кода довольно сложно. Существует 2 типа микросервисов: Stateless (без сохранения состояния) и Stateful (с отслеживанием состояния) Микросервисы на Java полагаются друг на друга; они должны взаимодействовать между собой. Микросервисы позволяют в большей степени сконцентрироваться на определенных функциях или потребностях бизнеса. Сервисно-ориентированная архитектура, или СОА, – это усовершенствованные распределенные вычисления, основанные на проектной модели запроса/ответа в синхронных или асинхронных приложениях. Компоненты приложения в СОА открыты для внешнего мира и представлены в виде сервисов; микросервисы считаются частью СОА. Это реализация СОА. К популярным микросервисным инструментам относятся Wiremock, Docker и Hystrix.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59