По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Полученную от маршрутизаторов «соседей» и других устройств в рамках сети роутер хранит в нескольких таблицах. Существует 3 типа таблиц: Таблица соседей: Хранит информацию от устройств подключенных напрямую. Вся собранная от соседей информация добавляется в таблицу соседей и включает наименования интерфейсов и соответствующих адресов. По умолчанию, “Hello” пакеты отправляются с интерфейсов каждые 5 секунд, чтобы быть уверенным, что сосед работает. Каждый EIGRP маршрутизатор хранит свой собственный экземпляр такой таблицы. Таким образом: Каждый маршрутизатор имеет четкое представление о напрямую подключенных устройствах. Каждый роутер располагает топологией сети в рамках своего ближайшего окружения. Топологическая таблица: Представляет собой набор из таблиц других EIGRP устройств полученных от соседей. Данная таблица представляет из себя список сетей назначения и соответствующих метрик. Выглядит данная таблица вот так: При условии доступность устройств Successor и Feasible Successor они так же присутствуют в таблице для каждой из сетей. Каждый из пунктов маркируется буков A или P, что означает активное или пассивное состояние. Пассивное состояние говорит о том, что роутер знает маршрут к пункту назначения, в то время как активный означает, что топология изменилась и маршрутизатор обновляет данные для данного маршрута. Подчеркнем следующие позиции: Для каждой из сетей назначения маршрутизатор хранит маршрут через Feasible Successor, т.е маршрут, который считается вторым по приоритету после маршрута через Successor. Таблица маршрутизации: Данная таблица представляет собой карту из всех известных маршрутов. Данная таблица строится на основании данных, полученных из топологической таблицы. Можно сказать, что указанные выше таблицы используются для количественной характеристики маршрутов, а таблица маршрутизации дает нам качественную характеристику. Что важно: Только один маршрут через Successor попадает в таблицу маршрутизации и используется для отправки пакетов (в случае доступности). Если маршрут через Successor оказывается недоступным, в таблицу маршрутизации из топологической таблицы копируется маршрут через Feasible Successor и используется в качестве альтернативного. Что такое Successor? Существует два главных типа устройств в сетях EIGRP. Оба устройства гарантируют отсутствие петель в сети: Successor: Устройство, которое обеспечивает самую короткую дистанцию маршрута на пути пакета в сеть назначения. Другими словами, это устройство обеспечивает наилучший маршрут в сеть назначения. Feasible Successor: Это устройство обеспечивает второй по приоритету маршрут в сеть назначения после маршрута Successor – устройства. Типы пакетов EIGRP EIGRP использует 5 типов пакетов: Hello/ACKs пакеты: Это мультикаст пакеты, используемые для обнаружения и отслеживания состояния соседских устройств в сети. Любой Hello пакет должен получить подтверждение, или другими словами ответ – то есть ACK сообщение. Хочется отметить, что ACK пакет является юникастовым. Updates: Надежные юникастовые пакеты, который содержат обновления маршрутной информации для построения/перестроения таблицы маршрутизации. Queries: Мультикаст пакеты, которые отправляет устройство при переходе в активное состояние. Если пакет отправляется в качестве ответа, то он будет юникастовым. Replies: Это надежные юникаст пакеты отправленные в ответ на queries пакеты. Данные пакет говорит получателю о том, что устройство Feasible Successor доступно и не должно переходить в активный режим. Requests: Ненадежные мультикаст или юникаст пакеты, используемые для сбора информации от соседних устройств. В следующей статье мы расскажем о сходимости EIGRP сетей.
img
Привет, дорогой читатель! В сегодняшней статье, мы расскажем, как облегчить себе жизнь при работе с виртуальными машинами в среде VirtualBox. Возможно кто-то уже догадался, что речь пойдёт от о Guest Additions. Обзор Guest Additions - это набор системных драйверов и приложений, которые обеспечивают более тесную интеграцию хоста виртуализации и гостевых виртуальных машин, которые развёрнуты на хосте. Эти приложения оптимизируют производительность гостевых виртуальных машин и делают работу с ними более удобной. При этом, что очень важно, дополнительные ресурсы хоста виртуализации выделять не нужно! Стоит отметить, что данный функционал реализован почти во всех популярных средах виртуализации. Например в VmWare, аналогом Guest Additions является VmWare Tools, в в Hyper-V - Integration Services Guest Additions поддерживается для виртуальных машин всех популярных ОС: Windows, Linux, Mac OS X, FreeBSD, OpenBSD, Solaris. Полный список поддерживаемых ОС можно найти на сайте разработчика: https://www.virtualbox.org/manual/ch03.html#guestossupport. Поставляется в виде образа .iso CD/DVD диска, который находится в установочной директории VirtualBox и называется VBoxGuestAdditions.iso. Ну например в Windows 7 образ можно найти в C:Program FilesOracleVirtualBox, если Вы, конечно, не установили сам VirtualBox куда-то ещё. Поэтому нужно просто подмонтировать образ этого диска в виртуальной машине и запустить процесс установки. Функциональные возможности Итак, почему же стоит устанавливать Guest Additions? Сейчас объясню. Guest Additions включает следующий функционал: Интеграция указателя мыши. Больше не надо нажимать дополнительных кнопок чтобы “захватывать” (capture) и “освобождать” курсор на экране виртуальной машины. Общие папки. Позволяет создавать общие папки для быстрого обмена файлами между хостом и гостевой виртуальной машиной. Функция Drag and Drop. Позволяет переносить файлы с хоста на гостевую виртуальную машину и наоборот, захватывая контент курсором мыши. В данном примере, мы перенесли файл text_file.txt с виртуальной машины с ОС Windows 7 на хост под управлением OS Linux Ubuntu при помощи функции Drag and Drop Поддерживается начиная с VirtualBox 5.0. После установки Guest Additions, данный функционал необходимо включить в разделе Devices → Drag and Drop Улучшенная поддержка видео. Становится доступным ресайзинг окна виртуальной машины. Автоматически настраивается разрешение. Включается поддержка 3D и 2D графики и ускоренная производительность видео. Общий буфер обмена. Тут всё просто – теперь можно Copy/Paste как из, так и в виртуальную машину. Включается также в разделе Devices → Clipboard Временная синхронизация. Включает автоматическую синхронизацию времени между хостом виртуализации и виртуальной машиной. Это важно в случае, когда например нужно “приостановить” (pause) работу виртуальной машины на большой промежуток времени. Одновременная работа с окнами разных ОС. Данный функционал лучше всего проиллюстрирует картинка ниже: В данном примере – на хосте с OS Windows 7 в VirtualBox развёрнута виртуальная машина с OS Ubuntu Linux. Как видите, с помощью Guest Additions мы может одновременно работать с окнами этих ОС. На картинке – справа открыт Internet Explorer в Windows, а слева Mozzila Firefox в Ubuntu. Автоматические логины - позволяет настроить автоматический вход в виртуальную машину с помощью специальной подсистемы. Нужно только забить в ней реквизиты для доступа – имя учётной записи, пароль и домен. В общем, если собираетесь работать с виртуальной машиной долго, то устанавливать Guest Additions – нужно! Это значительно облегчит работу. Тем более, что установка не займёт много времени. Кстати об установке. Установка Windows Установка Guest Additions для виртуальных машин с ОС Windows довольно тривиальна. В панели управления виртуальной машиной выбираем Устройства (Devices) → Подключить образ диска Дополнений гостевой ОС (Insert Guest Additions CD image) После этого система определит, что был установлен установочный диск, осталось только нажать Run и следовать стандартной процедуре установки. После установки система должна перезагрузиться, если этого не произошло, то сделайте это вручную. Linux через GNOME Установка на Linux с графическими интерфейсами типа GNOME также всё очень просто. Для этого также выбираем Устройства (Devices) → Подключить образ диска Дополнений гостевой ОС (Insert Guest Additions CD image) в панели управления VirtualBox: После этого система определит установочный диск и останется лишь нажать Run Software. После установки также требуется перезагрузить систему. Linux через консоль Гораздо интереснее дела обстоят с установкой на Linux без графических интерфейсов через консоль. Рассмотрим установку на примере CentOS 6. Начинаем с того, что также вставляем виртуальный диск. После этого переходим в подмонтированный раздел: cd /mnt/cdrom/ И запускаем процесс установки следующей командой: ./VBoxLinuxAdditions.run После этого делаем reboot. Если всё прошло успешно, что появится новый модуль vboxguest. Проверить можно командой: lsmod | grep vboxguest:
img
Машинное обучение - это метод анализа данных, который автоматизирует построение аналитической модели. Это отрасль искусственного интеллекта, основанная на идее, что системы могут обучаться на основе данных, выявлять закономерности и принимать решения с минимальным вмешательством человека. Эволюция машинного обучения Из-за новых вычислительных технологий машинное обучение сегодня отличается от машинного обучения в прошлом. Оно основывается на распознавании образов и теории, что компьютеры могут обучаться, не будучи запрограммированы для выполнения конкретных задач; исследователи, интересующиеся искусственным интеллектом, хотели посмотреть, смогут ли компьютеры обучаться, основываясь на базе данных. Итеративный аспект машинного обучения важен, так как модели, подвергающиеся воздействию новых данных, способны самостоятельно адаптироваться. Они учатся от предыдущих вычислений для получения надежных и воспроизводимых решений и результатов. Хотя многие алгоритмы машинного обучения существуют уже давно, способность автоматически применять сложные математические вычисления к объемным данным - снова и снова, все быстрее и быстрее - это новейшая разработка. Вот несколько широко разрекламированных примеров приложений машинного обучения, с которыми вы можете быть знакомы: Сильно раскрученная, самоуправляемая машина Google. Суть машинного обучения. Онлайн рекомендации, такие, как у Amazon и Netflix. Приложения машинного обучения для повседневной жизни. Знание того, что клиенты говорят о вас в соцсетях. Машинное обучение в сочетании с созданием лингвистических правил. Обнаружение мошенничества. Одно из наиболее очевидных, важных применений в современном мире. Почему машинное обучение важно? Возобновление интереса к машинному обучению обусловлено теми же факторами, которые сделали анализ данных и Байесовский анализ более популярными, чем когда-либо. Растущие объемы и разнообразие доступных данных, вычислительная обработка, которая является более дешевой и мощной; доступное хранилище для хранения данных - все эти аспекты означают, что можно быстро и автоматизировано производить модели, которые могут анализировать более объемные и сложные данные и обеспечивать быстрые и более точные результаты - даже на очень больших объемах. А благодаря созданию точных моделей у организации больше шансов определить выгодные возможности или избежать неизвестных рисков. Что необходимо для создания эффективных систем машинного обучения? Возможности подготовки данных. Алгоритмы - базовый и продвинутый. Автоматизация и итерационные процессы. Масштабируемость. Ансамблевое моделирование. Интересные факты В машинном обучении, цель называется - «ярлык». В статистике, цель называется «зависимой переменной». Переменная в статистике называется – «функция в машинном обучении». Преобразование в статистике называется – «создание функции в машинном обучении». Кто использует машинное обучение? Большинство отраслей промышленности, работающих с большими объемами данных признали ценность технологии машинного обучения. Подбирая идеи из этих данных - часто в режиме реального времени - организации способны более эффективно работать или получить преимущество перед конкурентами. Финансовые услуги Банки и другие предприятия финансовой индустрии используют технологию машинного обучения для двух ключевых целей: для выявления важных данных и предотвращения мошенничества. Они могут определить инвестиционные возможности или помочь инвесторам узнать, когда торговать. Интеллектуальный анализ данных может также идентифицировать клиентов с профилями высокого риска или использовать кибер-наблюдение, чтобы точно определить признаки мошенничества. Правительство Правительственные учреждения, такие как общественная безопасность и коммунальные службы, особенно нуждаются в машинном обучении, поскольку у них есть несколько источников данных, из которых можно получить информацию для полного понимания. Например, анализ датчика данных определяет пути повышения эффективности и экономии средств. Машинное обучение также может помочь обнаружить мошенничество и минимизировать кражу личных данных. Здравоохранение Машинное обучение является быстро развивающимся направлением в отрасли здравоохранения, благодаря появлению переносных устройств и датчиков, которые могут использовать данные для оценки состояния здоровья пациента в режиме реального времени. Эта технология также может помочь медицинским экспертам анализировать данные для выявления тенденций или «красных флажков», которые могут привести к улучшению диагностики и лечения. Розничная торговля Веб-сайты, рекомендующие товары, которые могут вам понравиться на основе предыдущих покупок, используют машинное обучение для анализа вашей истории покупок. Ритейлеры полагаются на машинное обучение для сбора данных, их анализа и использования для персонализации процесса совершения покупок, проведения маркетинговой кампании, оптимизации цен, планирования поставок товаров, а также для понимания потребностей клиентов. Нефть и газ Поиск новых источников энергии. Анализ минералов в почве. Прогнозирование неисправности датчика НПЗ. Оптимизация распределения нефти, чтобы сделать ее более эффективной и рентабельной. Количество вариантов использования машинного обучения для этой отрасли огромно - и продолжает расти. Транспорт Анализ данных для определения закономерностей и тенденций является ключевым для транспортной отрасли, которая полагается на повышение эффективности маршрутов и прогнозирование потенциальных проблем для повышения прибыльности. Анализ данных и аспекты моделирования машинного обучения являются важными инструментами для компаний доставки, общественного транспорта и других транспортных организаций. Каковы популярные методы машинного обучения? Двумя наиболее широко распространенными методами машинного обучения являются контролируемое обучение и неконтролируемое обучение, но существуют и другие методы машинного обучения. Вот обзор самых популярных типов. Контролируемое обучение Алгоритмы контролируемого обучения изучаются с использованием маркированных примеров, таких как ввод, в котором известен желаемый результат. Например, единица оборудования может иметь точки данных, помеченные как «F» (ошибка) или «R» (работа). Алгоритм обучения получает набор входных данных вместе с соответствующими правильными выходными данными, а алгоритм обучается путем сравнения своих фактических выходных данных с правильными выходными данными, чтобы найти ошибки. Затем он соответствующим образом модифицирует модель. С помощью таких методов, как классификация, регрессия, прогнозирование и повышение градиента, контролируемое обучение использует шаблоны для прогнозирования значений метки на дополнительных немаркированных данных. Контролируемое обучение обычно используется в приложениях, где исторические данные предсказывают вероятные будущие события. Например, он может предвидеть, когда транзакции по кредитным картам могут быть мошенническими или какой клиент страхования может подать иск. Полуконтролируемое обучение Полуконтролируемое обучение используется для тех же приложений, что и контролируемое обучение. Но для обучения оно использует как помеченные, так и непомеченные данные, как правило, это небольшой объем помеченных данных с большим количеством немеченых данных (поскольку немеченые данные дешевле и требуют меньше усилий для их получения). Этот тип обучения может использоваться с такими методами, как классификация, регрессия и прогнозирование. Полуконтролируемое обучение полезно, когда стоимость, связанная с маркировкой, слишком высока, чтобы учесть полностью помеченный процесс обучения. Ранние примеры этого включают идентификацию лица человека по веб-камере. Неконтролируемое обучение Неконтролируемое обучение используется в отношении данных, которые не имеют исторических меток. Система не сказала «правильный ответ». Алгоритм должен выяснить, что показывается. Цель состоит в том, чтобы исследовать данные и найти некоторую структуру внутри. Неуправляемое обучение хорошо работает на транзакционных данных. Например, он может идентифицировать сегменты клиентов со схожими признаками, которые затем могут обрабатываться аналогично в маркетинговых кампаниях. Или он может найти основные атрибуты, которые отделяют сегменты клиентов друг от друга. Популярные методы включают самоорганизующиеся таблицы, отображение ближайших соседей, кластеризацию k-средств и разложение по сингулярным числам. Эти алгоритмы также используются для сегментирования текстовых тем, рекомендации элементов и резко отличающихся значений данных. Усиленное обучение Усиленное обучение часто используется для робототехники, игр и навигации. Благодаря обучению с подкреплением алгоритм с помощью проб и ошибок обнаруживает, какие действия приносят наибольшее вознаграждение. Этот тип обучения состоит из трех основных компонентов: агент (учащийся или лицо, принимающее решения), среда (все, с чем взаимодействует агент) и действия (что может делать агент). Цель состоит в том, чтобы агент выбирал действия, которые максимизируют ожидаемое вознаграждение в течение заданного периода времени. Агент достигнет цели намного быстрее, следуя хорошей политике. Таким образом, цель усиленного обучения состоит в том, чтобы изучить лучшую политику. Каковы различия между интеллектуальным анализом данных, машинным обучением и глубоким обучением? Хотя все эти методы имеют одну и ту же цель - извлекать идеи, шаблоны и зависимости, которые можно использовать для принятия решений - у них разные подходы и возможности. Сбор данных (Data Mining) Интеллектуальный анализ данных можно рассматривать как набор множества различных методов для извлечения информации из данных. Он может включать традиционные статистические методы и машинное обучение. Интеллектуальный анализ применяет методы из разных областей для выявления ранее неизвестных шаблонов из данных. Он может включать в себя статистические алгоритмы, машинное обучение, анализ текста, анализ временных рядов и другие области аналитики. Интеллектуальный анализ данных также включает изучение, практику хранения и обработки данных. Машинное обучение Основное отличие машинного обучения заключается в том, что, как и в статистических моделях, цель состоит в том, чтобы понять структуру данных - подогнать теоретические распределения к хорошо понятным данным. Таким образом, под статистическими моделями стоит теория, которая математически доказана, но для этого необходимо, чтобы данные также соответствовали определенным строгим гипотезам. Машинное обучение развивалось на основе способности использовать компьютеры для проверки данных на предмет структуры, даже если у нас нет теории о том, как эта структура выглядит. Испытанием модели машинного обучения является ошибка проверки новых данных, а не теоретическое испытание, которое подтверждает нулевую гипотезу. Поскольку машинное обучение часто использует итеративный подход для изучения данных, обучение может быть легко автоматизировано. Передача через данные проходит, пока не будет найден надежный шаблон. Глубокое изучение (Deep learning) Глубокое обучение сочетает в себе достижения в области вычислительной мощности и специальных типов нейронных сетей для изучения сложных моделей больших объемов данных. В настоящее время методы глубокого обучения подходят для идентификации объектов в изображениях и слов в звуках. В настоящее время исследователи стремятся применить эти успехи в распознавании образов для решения более сложных задач, таких как автоматический перевод языка, медицинские диагнозы и множество других важных социальных и деловых проблем. Как это работает? Чтобы получить максимальную отдачу от машинного обучения, вы должны знать, как сочетать лучшие алгоритмы с подходящими инструментами и процессами. Алгоритмы: графические пользовательские интерфейсы помогают создавать модели машинного обучения и реализовывать итеративный процесс машинного обучения. Алгоритмы машинного обучения включают в себя: Нейронные сети Деревья решений Случайные леса Ассоциации и обнаружение последовательности Градиент повышения и расфасовки Опорные векторные машины Отображение ближайшего соседа K-средства кластеризации Самоорганизующиеся карты Методы локальной оптимизации поиска Максимальное ожидание Многомерные адаптивные регрессионные сплайны Байесовские сети Оценка плотности ядра Анализ главных компонентов Сингулярное разложение Смешанные Гауссовские модели Последовательное сопроводительное построение правил Инструменты и процессы: Как мы уже знаем, это не просто алгоритмы. В конечном счете, секрет получения максимальной отдачи от ваших объемных данных заключается в объединении лучших алгоритмов для поставленной задачи с: Комплексным качеством данных и их управлением GUI для построения моделей и процессов Интерактивным исследованием данных и визуализацией результатов модели Сравнением различных моделей машинного обучения для быстрого определения лучшей Автоматизированной оценкой группы для выявления лучших исполнителей Простым развертыванием модели, что позволяет быстро получать воспроизводимые и надежные результаты Интегрированной комплексной платформой для автоматизации процесса принятия решений
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59