По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Модуль «Blacklist» (черный список) в FreePBX 13 предназначен для формирования списка номеров, звонки с которых будут запрещены на IP – АТС Asterisk. Если кто-либо из указанного списка, позвонит на вашу АТС, то он либо будет отправлен по заранее настроенному маршруту, либо по умолчанию, он услышит следующее сообщение: Создаем черный список В верхней части, в меню навигации, нажмите Admin, а затем в списке выберите Blacklist Далее, нажмите + Blacklist Number, после чего появится pop-up окно, в котором необходимо внести настройки номеров, которые мы хотим блокировать. Давайте посмотрим что можно тут настроить: Number Введите номер, который необходимо заблокировать. Чтобы точно ввести номер в правильном формате, найдите звонок с номера, который вы хотите внести в черный список. Для этого, в верхнем меню навигации FreePBX нажмите на вкладку Reports -> CDR Reports. Найдите указанный звонок и скопируйте номер из столбца CallerID. Description Укажите наглядное описание для указанного в предыдущем пункте номера – это поможет вам проще ориентироваться в настройках в будущем. По окончанию настроек нажмите Save Changes. Готово, данная настройка позволяет нам запретить звонки с номера 71234567890. Удаление номера из черного списка Чтобы удалить номер из черного листа, отметьте необходимую запись галочкой, а затем нажмите на красную кнопку Delete Selected. Так же вы можете нажать на соответствующий значок, который находится в столбце Actions. Просмотр статистики по заблокированным номерам Модуль Blacklist имеет встроенную статистику по заблокированным номерам. Для ее просмотра нажмите на соответствующий значок в поле Actions Импорт в формате .csv Если Вам необходимо внести сразу несколько номеров из .csv файла, нажмите на вкладку Import/Export При импорте номеров из .csv файла, формате должен быть следующим: number,description {NUMBER},{DESCRIPTION} Блокировка Unknown (неизвестных номеров) Если вы хотите заблокировать звонки с неизвестных номеров, с которых порой звонят мошенники, перейдите во вкладку Settings и отметьте Yes в поле Block Unknown/Blocked Caller ID. Так же, вы можете выбрать назначение для звонка, который находится в черном списке. Например, данный звонок можно отправлять на заранее записанное голосовое сообщение. По окончанию настроек нажмите Submit Блокировка с помощью телефона Помимо настроек в интерфейсе FreePBX, пользователь может внести номер в черный список с помощью специального телефонного кода. Данные телефонные коды можно найти перейдя в меню навигации во вкладку Admin -> Feature Codes Разберем каждый из кодов: *30 - ручной ввод номера, который необходимо заблокировать *32 - будет заблокирован последний звонок, который пришел на вашу АТС *31 - ручной ввод номера, который необходимо удалить из черного списка
img
В этой заключительной статье о перераспределении маршрутов мы проверим работу Route redistribution с помощью IPv6 и увидим небольшое отличие в настройке routes redistributed IPv6 от routes redistributed IPv4. Предыдущие статьи из цикла: Часть 1. Перераспределение маршрутов (Route redistribution) Часть 2. Фильтрация маршрутов с помощью карт маршрутов Часть 3. Перераспределение маршрутов между автономными системами (AS) Перераспределение подключенных сетей Во-первых, рассмотрим маршрутизатор, выполняющий маршрутизацию, предположим, что используется протокол OSPF. Кроме того, предположим, что маршрутизатор имеет несколько интерфейсов, которые участвуют в маршрутизации OSPF. Представьте, что на этом же маршрутизаторе мы запускаем другой протокол маршрутизации (скажем, EIGRP), и мы делаем взаимное перераспределение маршрутов. Вот что удивительно. Если мы делаем перераспределение маршрута на этом маршрутизаторе, сети IPv4, связанные с интерфейсами этого маршрутизатора, участвующими в OSPF в нашем примере, будут перераспределены в EIGRP. Однако сети IPv6, будут вести себя по-другому. В частности, в сетях IPv6 мы должны ввести дополнительный параметр в нашу конфигурацию перераспределения маршрутов, явно указывая, что мы хотим перераспределить подключенные сети. В противном случае эти маршруты IPv6, связанные с непосредственно с подключенными интерфейсами, не перераспределяются. Логика такого поведения вытекает из понимания того, что для перераспределения маршрута данный маршрут должен появиться в таблице IP-маршрутизации маршрутизатора. Конечно, когда посмотрим таблицу IP-маршрутизации маршрутизатора и увидим непосредственно подключенные сети, эти сети отображаются как подключенные сети, а не сети, которые были изучены с помощью определенного протокола маршрутизации. В то время как route redistribution для IPv4 понимает, что сеть напрямую подключена, но участвует в процессе маршрутизации и поэтому будет перераспределена, route redistribution для IPv6 не делает такого предположения. В частности, если мы перераспределяем сети IPv6 из одного протокола маршрутизации в другой, эти сети должны отображаться в таблице маршрутизации IPv6 маршрутизатора вместе с указанием, что они были изучены с помощью перераспределяемого протокола маршрутизации. Конечно, мы можем добавить дополнительный параметр к нашей команде redistribute, чтобы заставить эти непосредственно подключенные сети IPv6 (участвующие в распространяемом протоколе) также быть перераспределенными. Эта настройка будет продемонстрирована немного позже. Перераспределение в OSPF В прошлой статье мы обсуждали потенциальную проблему, с которой вы можете столкнуться при распространении в OSPF (в зависимости от вашей версии Cisco IOS). Проблема была связана с подсетями. В частности, по умолчанию в более старых версиях Cisco IOS OSPF только перераспределяет классовые сети в OSPF, если мы не добавим параметр subnets к команде redistribute. Добавление этого параметра позволило перераспределить сети в OSPF, даже если у них не было классовой маски. Пожалуйста, имейте в виду, что последние версии Cisco IOS автоматически добавляют параметр подсети, не требуя от вас ручного ввода. Однако параметр подсети в IPv6 route redistribution отсутствует. Причина в том, что IPv6 не имеет понятия о подсетях. Пример route redistribution IPv6 Чтобы продемонстрировать перераспределение маршрутов IPv6, рассмотрим следующую топологию: Протоколы маршрутизации OSPFv3 и EIGRP для IPv6 уже были настроены на всех маршрутизаторах. Теперь давайте перейдем к маршрутизатору CENTR и настроим взаимное route redistribution между этими двумя автономными системами. Убедимся в этом, проверив таблицу маршрутизации IPv6 маршрутизатора CENTR. Приведенные выше выходные данные показывают, что мы изучили две сети IPv6 через OSPF, две сети IPv6 через EIGRP, а CENTR напрямую подключен к двум сетям IPv6. Далее, давайте настроим взаимное перераспределение маршрутов между OSPFv3 и EIGRP для IPv6. CENTR # conf term Enter configuration commands, one per line. End with CNTL/Z. CENTR (config)# ipv6 router eigrp 1 CENTR (config-rtr) # redistribute ospf 1 metric 1000000 2 255 1 1500? include-connected Include connected match Redistribution of OSPF routes route-map Route map reference cr CENTR (config-rtr) #redistribute ospf 1 metric 1000000 2 255 1 1500 include-connected CENTR (config-rtr) #exit CENTR (config) # ipv6 router ospf 1 CENTR (config-rtr) #redistribute eigrp 1? include-connected Include connected metric Metric f or redistributed routes metric-type OSPF/IS-IS exterior metric type for redistributed routes nssa-only Limit redistributed routes to NSSA areas route-map Route map reference tag Set tag for routes redistributed into OSPF cr CENTR (config-rtr) #redistribute eigrp 1 include-connected CENTR (config-rtr) #end CENTR# Обратите внимание, что конфигурация взаимного перераспределения маршрутов, используемая для маршрутов IPv6, почти идентична нашей предыдущей конфигурации для перераспределения маршрутов IPv4. Однако для обеих команд перераспределения был указан параметр include-connected. Это позволило маршрутизатору CENTR перераспределить сеть 2003::/64 (непосредственно подключенную к интерфейсу Gig0/1 маршрутизатора CENTR и участвующую в OSPF) в EIGRP. Это также позволило маршрутизатору CENTR перераспределить сеть 2004::/64 (непосредственно подключенную к интерфейсу Gig0/2 маршрутизатора CENTR и участвующую в EIGRP) в OSPF. Чтобы убедиться, что наша конфигурация рабочая, давайте перейдем на оба маршрутизатора OFF1 и OFF2, убедившись, что каждый из них знает, как достичь всех шести сетей IPv6 в нашей топологии. Вышеприведенные выходные данные подтверждают, что маршрутизаторы OFF1 и OFF2 знают о своих трех непосредственно связанных маршрутах и трех маршрутах, перераспределенных в процессе маршрутизации. Итак, как мы видим, что когда речь заходит о routes redistributed IPv6, то не так уж много нового нужно узнать по сравнению с routes redistributed IPv4.
img
Что такое API? Поскольку мы говорим про REST API, то наше определение API не будет сильно выходить за тематику сетей. Подробнее про API можно прочитать тут. API означает Application Programming Interface. API задает связь между программами для возможности передачи данных. То, что программа имеет API, подразумевает, что она передает часть своих данных для использования клиентом. Клиентом может быть фронтенд часть той же самой программы или другая внешняя программа. Для получения этих данных необходимо отправить структурированный запрос на API. Если запрос удовлетворят желаемым требованиям, то ответ, содержащий данные, будет отправлен туда откуда был сделан запрос. Обычно ответ представлен в формате JSON или XML. В некоторых случаях, для получения доступа к внешнему API, от вас может потребоваться авторизация. Каждый API имеет документацию, в которой говорится какие данные доступны и как структурировать свой запрос для получения правильного ответа. Примеры API Рассмотрим в качестве примера реальную ситуацию. Представьте посещение нового ресторана. Вы пришли, чтобы заказать еду, а поскольку вы здесь впервые, то точно не знаете какие блюда они подают. Официант дает вам меню, в котором можно выбрать, чтобы вы хотели съесть. После того, как выбор сделан, официант отправляется на кухню и приносит вам еду. В данном случае официант - это API, который обеспечивает вашу взаимосвязь с кухней. Документация API - это меню. Запрос выполняется в тот момент, когда вы отмечаете желаемые блюда, а ответ - это блюда, которые вам принесли. Что такое REST? REST означает REpresentational State Transfer (передача состояния представления). Это стандарт, который определяет форму и работу процессов, позволяющих нам взаимодействовать с данными на вебсерверах. Приведенное выше определение может выглядеть не так сложно или «профессионально», как то, что вы могли встретить в интернете, но главное, чтобы вы поняли основную цель REST API. API, который удовлетворяет некоторым или всем шести руководящим ограничениям REST считается RESTful. Мы можем взаимодействовать с серверами при помощи протокола HTTP. Благодаря этим протоколам мы можем Create (создавать), Read (читать), Update (обновлять) and Delete (удалять) данные – также известные как CRUD операции. Но каким образом мы можем выполнять CRUD операции и взаимодействовать с данными на сервере? Мы делаем это, посылая HTTP запросы, и это тот самый момент, когда REST начинает действовать. REST упрощает процесс взаимодействия с сервером, предоставляя различные HTTP методы/операции/команды, с помощью которых можно посылать запросы на сервер. Как взаимодействовать с сервером, используя REST API? Как мы уже обсуждали, REST API облегчает процесс взаимодействия с сервером, предоставляя нам различные методы HTTP запросов. Наиболее распространенные методы: GET: Метод get используется для Чтения данных с сервера. POST: Метод post используется для Создания данных. PATCH/PUT: Метод patch используется для Обновления данных. DELETE: Метод delete используется для Удаления данных. Эти методы предоставлены нам REST, что упрощает выполнение CRUD операций. Таким образом: Создать => POST Прочитать => GET Обновить => PATCH/PUT Удалить => DELETE Если мы хотим сделать запрос на сервер, например, для получения данных, то мы отправляем запрос GET на узел/источник данных на сервере. Узел данных аналогичен URL. Если запрос составлен корректно, то сервер отправит нам в ответ запрашиваемые данные. Также он отправит код состояния, где 200 - это успешное выполнение, а 400 - это ошибка пользователя. Пример запроса на JSONPlaceholder API, используя JavaScript: fetch('https://jsonplaceholder.typicode.com/todos/1') .then(response => response.json()) .then(json => console.log(json)) При выполнении запроса с использованием fetch API по умолчанию используется метод GET, поэтому мы можем не указывать его явно. Но мы должны будем это сделать при использовании других методов. В приведенном выше примере, узел данных - это https://jsonplaceholder.typicode.com, а запрашиваемые нами данные - это один элемент todo. Данные будет получены в JSON формате. Если бы мы использовали запрос POST, тогда бы мы использовали метод POST, а в теле запроса находились бы данные, которые мы создали для отправки на сервер. Для удаления нам потребуется использовать соответствующий запрос, содержащий id элемента todo, который мы хотим удалить. Например: fetch('https://jsonplaceholder.typicode.com/posts/3', { method: 'DELETE', }); Для обновления данных нужно, чтобы запрос содержал id и данные для обновления. Как в этом примере: fetch('https://jsonplaceholder.typicode.com/posts/5', { method: 'PATCH', body: JSON.stringify({ title: 'new todo', }), headers: { 'Content-type': 'application/json; charset=UTF-8', }, }) .then((response) => response.json()) .then((json) => console.log(json)); Заключение В этом руководстве вы узнали, что такое REST и как он помогает нам эффективно взаимодействовать с сервером. Мы дали определение API и рассмотрели пример, который помог объяснить его смысл. Мы также узнали некоторые методы REST для создания, чтения, обновления и удаления данных, хранящихся на сервере.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59