По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Полиалфавитный шифр – это криптосистема, в которой используется несколько моноалфавитных шифров. Поэтому нам необходимо иметь как минимум 2 таблицы и шифрование текста происходит следующим образом. Первый символ шифруется с помощью первой таблицы, второй символ – с помощью второй таблицы и так далее. Сильные стороны полиалфавитных шифров заключается в том, что атака по маске и атака частотным криптоанализом здесь не работает, потому что в таких шифрах две разные буквы могут быть зашифрованы одним и тем же символом. Моноалфавитные шифры были популярны вплоть до конца 16 века, так как практически все научились их вскрывать. Необходимо было что-то менять и поэтому в 1585 году был создан шифр Виженера. С этого началась новая эпоха в истории криптографии, которая называется период полиалфавитных шифров, хотя попытки создать подобные криптосистемы были и раньше за пол века до этого, но ничего серьёзного из этого не получилось. Шифр Гронсфельда Данный шифр представляет собой модификацию шифра Цезаря и по своей структуре похож на шифр Виженера. Принцип работы. Берём к примеру текст «РАБОТА» и ключ, например - «136». Ключ в данном случае не одно число, а набор цифр, для понимания можно представить в виде «1,3,6» и не важно какой длины. Далее каждой букве исходного текста присваиваем по 1 цифре ключа, например «Р(1) А(3) Б(6) О(1) Т(3) А(6)» и каждому символу исходного текста прибавляем значение ключа по методу Цезаря. Получается зашифрованный текст «СГЖПХЁ». При расшифровании проделываем ту же логику, как при расшифровании по методу Цезаря. Шифр Виженера Шифр Виженера является самым популярным полиалфавитным шифров за всю историю. Для начала создаётся квадрат Виженера. Ключом в данном методе может быть любой длины и состоять из любых символов, которые есть в таблице 3. Например возьмём ключ «ШИНА» и исходный текст «РАБОТА». Проделываем то же самое, что и при шифре Гронсфельда, к каждой букве исходного текста записываем исходную букву ключа – «Р(Ш) А(И) Б(Н) О(А) Т(Ш) А(И)». Согласно таблице 3 по диагонали находим букву исходного текста, а по вертикали находим букву ключа, их пересечение является зашифрованной буквой, таким образом проделываем для всех букв и шифруем текст, получается «СЙППКЙ». Чтобы расшифровать нам нужно точно так же под каждой буквой закрытого текста записываем букву ключа - «С(Ш) Й(И) П(Н) П(А) К(Ш) Й(И)». По вертикали находим букву ключа и по этой строке находим зашифрованную букву, пересечение с буквой по горизонтальной строки – буква исходного текста, расшифровывает и получаем исходный текст. Атака методом индекса совпадений В данном случае рассмотрим криптоанализ шифра Виженера, его так же можно применять и к шифру Гронсфельда. Нижеприведённый метод криптоанализа называется методом индекса совпадений. Атака методом индекса совпадений состоит из 2 шагов: Определяет длину ключевого слова Дешифрование текста Рассмотрим каждый из этапов: 1. Для того, чтобы найти длину ключа воспользуемся методом индекса совпадений. ИС = 0,0553 Индекс совпадений – это константа, вероятность того, что две наугад выбранные буквы в нормальном осмысленном произвольном русском тексте будут одинаковые.То есть вероятность, что две наугад выбранные буквы будут одинаковые, равна 5,53%. При атаке на шифротекст необходимо ориентироваться именно на эту вероятность. Если имеет шифротекст, зная о нём только то, что он зашифрован шифром Виженера, определяем длину ключа. В шифре Виженера ключом выступает любая последовательность цифр, начиная с 2, потому что если была бы 1 буква, то это просто шифр Цезаря. Итак, начиная с минимума, предполагаем, что длина ключа составляет 2 символа и проверяем это. Выбираем из шифротекста каждую вторую букву, начиная с первой и выписываем отдельно полученную строку. Предполагаемую длину ключа обозначаем k=2, а количество символов в этой строке за L. Далее из алфавита берём каждую букву и считаем для неё индекс совпадений, то есть берём определённую букву и подсчитываем сколько раз она встретилась в этой строке шифротекста (это число обозначаем – n), и так для всех букв. Далее высчитываем индекс совпадений по формуле ИС = n(n-1)/L(L-1) Далее высчитываем индекс совпадений для всего текста путем сложения всех индексов совпадений для всех букв отдельно. Получаем определённое значение и сравниваем его со значением константы. Если индекс совпадений очень близко к константе или больше, то это означает, что подобрана верная длина ключа. Если значение индекса намного отличается от константы, то значит подобранная длина ключа неверная и необходимо взять длину ключа 3 и выбирать из шифротекста каждую третью букву, начиная с первой и выполнять те же действия. Если индекс снова намного отличается от константы берем следующие значения ключа и выполняет те же действия, до тех пор, пока индекс совпадений будет очень близок к константе. 2. Вычислив длину ключевого слова возвращаемся к шифротексту. Разбиваем текст на количество символов символов в ключе, например, при длине ключа k=3, делим текст на 3 части. В первую часть будет входить каждая третья буква, начиная с первой, во вторую часть – каждая третья буква, начиная со второй, и третья часть – каждая третья буква, начиная с третьей. После этого выписываем отдельно каждую часть. Отдельная часть представляет собой обычный шифр Цезаря. Далее дешифруем каждую часть методом частотного криптоанализа. Находим самую частую букву каждой части шифротекста, сравниваем её с буквой «О», так как она в русском алфавите самая частая и сравниваем шифрованную букву с буквой «О». Вычисляем разницу позиций между ними – в ответе получим число, равное ключу и дешифруем с помощью него по шифру Цезаря первую часть шифротекста. Такие же действия проделываем и для остальных частей, затем восстанавливаем части дешифрованного шифротекста и получаем исходный текст. Автокорреляционный метод Данный метод проще в реализации, чем метод индекса совпадений, но последовательность действий точно такая: Определение ключа Дешифрование текста Имея шифротекст, необходимо посчитать количество букв в нём. Желательно весь шифротекст записать в одну строку, затем сделать копию и разместить под ней же. Как и в случае с методом индекса совпадением предполагаем для начала минимальную длину ключа, то есть k=2. Затем в копии строки шифротекста убираем первые два символа и дописываем их в конец строки. Далее ищем количество совпадающих букв между этими двумя строками и находим долю количества совпадений от общего количества символов в тексте по формуле: Y = n/L Y - Доля количества совпадений n – количество совпадений L – количество символов в шифротексте Полученное значение сравниваем со значением контанты индекса совпадений, так же – если это значение намного отличается, предполагаем длину ключа k=3 и делаем ту же процедуру до тех пор, пока доля количества совпадений будет близка к константе индекса совпадений. После нахождения длины ключа проделываем то же самое, что и в методе индекса совпадений и дешифруем текст. Шифр Тритемиуса Шифр Тритемиуса позиционируется усиленным шифром Цезаря и описывается формулой: C = (m+s(p))modN C - номер зашифрованного символа в алфавите m - номер символа открытого текста в алфавите n - количество символов в алфавите s(p) - это ключ, который представляет собой математическую функцию, например: s(p) = 2p+const p - порядковый номер символа в исходном тексте const - любое число, которое задаётся в ручную Точно так же, как в шифре Цезаря каждый символ, перед тем, как шифровать, будет переводится в число, согласно определённой таблице. Первое, что нужно сделать – пронумеровать все символы в исходном тексте, то есть каждый символ получается свой номер в зависимости от своей позиции в тексте. Шифрование происходит посимвольно. Расшифрование происходит похожим способом и описывается формулой: C = (m-s(p))modN Шифр для своего времени очень неплох, потому что не смотря на свою простоту, то есть самая сложная часть – это выбрать функцию s(p). Он демонстрирует достаточно высокий криптоустойчивости, то есть не уступает ни шифру Виженера, ни шифру Гросфельда. Книжный шифр Книжный шифр – не является популярным шифром среди старых шифров, но при грамотном подходе к использованию, обеспечивает криптостойкость на порядки выше, чем шифр Виженера и Гронсфельда. Это симметричный шифр, в котором в качестве ключа используется любая книга на выбор, и процесс шифрования происходит посимвольно. Выбираем первый символ исходного текста и находим его в нашей книге (с любого места). И в качестве зашифрованного символа используем комбинацию из 3 цифр (номер страницы, номер строки, номер символа в строке) и проделываем тоже самое с остальными символами исходного текста. При этом для повышения безопасности при повторении символа в исходном тексте выбирать для него другую комбинацию в книге, чтобы зашифрованные комбинации не повторялись. Чтобы получатель смог расшифровать полученное сообщение должен обладать точно такой же книгой. Поочередно смотрит комбинацию и находит её в данной книге и расшифровывает полученное сообщение. Недостаток этого шифра – это непрактичность и трудоёмкость при шифровании и расшифровании.
img
Для пользователей, которые обладают премиальной лицензии на Cisco Unified Contact Center Express (UCCX), одной из самых крутых фич является наличие возможной интеграции и отправки запросов в базу данных. Сами запросы могут строиться на базе введенной звонящим информации, его номера – чего угодно. Безусловно важно сделать ¬¬изначальный дизайн скриптов правильным и учитывать нагрузку. Большие и тяжелые скрипты, которые имеют много «плеч» в БД (базу данных), значительно увеличивают нагрузку на ресурсы сервера. А если БД еще и удалена от сервера CCX и имеет место сетевая задержка, то может иметь место прямое воздействие на бизнес и лояльность звонящего вам клиента. Обзор Cisco Unified CCX Script Editor Для создания и управления IVR скриптами в UCCX используется специальный инструмент - Cisco Unified CCX Editor. Он позволяет визуально управлять некими блоками, которые отвечают за то, или иное действие. Выглядит эта палетта следующим образом: Давайте рассмотрим раздел Database. Здесь мы видимо 4 пункта: DB Get - сопоставление полученных данных из БД к переменным скрипта; DB Read - подключение к серверу и запрос; DB Release - закрываем подключение к БД; DB Write - если нужно внести изменения в БД, используем Write метод; На скриншоте выше видно, что каждый скрипт начинается с события Start и заканчивается событием End. Во время звонка, по ходу выполнения скрипта, мы можем запрашивать данные из БД сколько угодно раз. Каждый запрос имеет свой отдельный список шагов, которые указаны в списке из 4х пунктов выше. Мы рекомендуем предварительно обкатать все SQL запросы, доступ системы и прочие рабочие факторы перед выгрузкой в продуктивную среду Например, давайте посмотрим, что скрыто внутри блока DB Read: Взглянем на поля, которые доступны для конфигурации: DB Resource Name - метка запроса. Своего рода метка; Data Source Name - источник данных (DSN), указанное в административной консоли UCCX (Cisco Unified CCX Administration Database); Timeout (in sec) - пауза выполнения запроса. Этот интервал защитит вашу систему от, например, потери связи с БД. То есть, максимум 7 секунд ожидания. Кстати, если указано как 0, то запрос не будет ограничен по времени; Теперь из вкладки General переходим во вкладку Field Selection: Запрос - SQL – команда (запрос), который вы ходите выполнить. Например, SELECT fld1, fld2 from tbl where fld1 = $variable - выбираем два поля из таблицы, где одно из полей равно переменной, которую, мы ранее, присвоили в скрипте (DTMF от клиента, например); Test (кнопка) - нажмите на эту кнопку, чтобы проверить синтаксис запроса и подключение к БД; Number of rows returned - количество вернувшихся строк запроса, в случае, если была нажата кнопка Test; Show all fields (select table/view) - показать все поля в таблице, к которой выполняется подключение; Отлично, разобрались. Теперь давайте взглянем на блок DB Get: DB Resource Name - лэйбл или имя для этого запроса; Data Source Name - имя БД (настраивается на стороне Cisco Unified CCX Administration); Refresh Database Schema (кнопка) - кнопка, которая отвечает за подтягивание данных БД и таблицы в CCX Editor; Переходим во вкладку Field Selection: Table/View - данное поле показывает имя таблицы из БД, которая выбрана во вкладке General, которую мы описывали выше; Табличное поле: Field Name - имя поля, в выбранной БД; Data Type - типа данных (строка/число и так далее); Local Variable - переменная скрипта, которая будет хранить соответствующее поле; Add/Modify (кнопки) - кнопки, которые отвечают за модификацию полей (кроме типа данных, он read only); Полученные данные можно использовать в скрипте, например, чтобы озвучивать клиенту (TTS) его данные по номеру телефона, или по введенным цифрам (номер заказа). Кстати, аналогичную фичу мы реализовали в связке Yandex.SpeechKit и Asterisk.
img
Привет, друг! Сегодня в статье мы расскажем, как рассчитать IP-адрес подсети с помощью инструмента ipcalc. При управлении сетью, несомненно, придется иметь дело с подсетями. Некоторые сетевые администраторы могут довольно быстро выполнять двоичные вычисления, чтобы определить маску подсети. Тем не менее, другим может потребоваться некоторая помощь, и здесь инструмент ipcalc очень пригодится. Ipcalc на самом деле делает намного больше - он принимает на вход IP-адрес и маску сети и на выходе вы получаете адрес сети, Cisco wildcard маску, широковещательный адрес, минимальный и максимальный хост и общее количество хостов. Вы также можете использовать его в качестве учебного пособия для представления результатов подсетей в простых для понимания двоичных значениях. Некоторые из применений ipcalc: Проверить IP-адрес Показать рассчитанный широковещательный адрес Отображение имени хоста, определенного через DNS Показать сетевой адрес или префикс Как установить ipcalc в Linux Чтобы установить ipcalc, просто запустите одну из приведенных ниже команд в зависимости от используемого дистрибутива Linux. $ sudo apt install ipcalc Пакет ipcalc должен автоматически устанавливаться в CentOS / RHEL / Fedora, и он является частью пакета initscripts, но если по какой-то причине он отсутствует, вы можете установить его с помощью: # yum install initscripts #RHEL/CentOS # dnf install initscripts #Fedora Как использовать ipcalc в Linux Ниже вы можете увидеть несколько примеров использования ipcalc. Получить информацию о сетевом адресе: # ipcalc 192.168.20.0 Результат примера: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet Рассчитайте подсеть для 192.168.20.0/24. # ipcalc 192.168.20.0/24 Результат: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet Рассчитайте одну подсеть с 10 хостами: # ipcalc 192.168.20.0 -s 10 Результат: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet 1. Requested size: 10 hosts Netmask: 255.255.255.240 = 28 11111111.11111111.11111111.1111 0000 Network: 192.168.20.0/28 11000000.10101000.00010100.0000 0000 HostMin: 192.168.20.1 11000000.10101000.00010100.0000 0001 HostMax: 192.168.20.14 11000000.10101000.00010100.0000 1110 Broadcast: 192.168.20.15 11000000.10101000.00010100.0000 1111 Hosts/Net: 14 Class C, Private Internet Needed size: 16 addresses. Used network: 192.168.20.0/28 Unused: 192.168.20.16/28 192.168.20.32/27 192.168.20.64/26 192.168.20.128/25 Если вы хотите убрать двоичный вывод, вы можете использовать опцию -b, как показано ниже. # ipcalc -b 192.168.20.100 Результат: Address: 192.168.20.100 Netmask: 255.255.255.0 = 24 Wildcard: 0.0.0.255 => Network: 192.168.20.0/24 HostMin: 192.168.20.1 HostMax: 192.168.20.254 Broadcast: 192.168.20.255 Hosts/Net: 254 Class C, Private Internet Чтобы узнать больше об использовании ipcalc, вы можете использовать: # ipcalc --help # man ipcalc
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59