По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Хотите добавить среду рабочего стола для Ubuntu Server? Это можно сделать очень просто. По умолчанию Ubuntu Server не включает графический интерфейс пользователя (GUI). Графический интерфейс занимает системные ресурсы (память и процессор), которые используются для задач, ориентированных на сервер. Однако некоторыми задачами и приложениями легче управлять с графического интерфейса. Некоторым людям не нравится делать все с помощью команд в терминале. В конце концов, большинство людей привыкли пользоваться компьютером в графическом режиме. Но это работает, только если у вас есть прямой доступ к серверу. При подключении к удаленному серверу, например по SSH, вам все равно придется пользоваться консолью. Однако есть такие инструменты, как Webmin или Cockpit, которые позволяют вам управлять своими серверами графически в веб-браузере. Но все-таки на боевых серверах лучше не использовать графические интерфейсы. Обновить репозитории и пакеты Начнем с обновления репозиториев и списков пакетов: sudo apt-get update && sudo apt-get upgrade Нажмите Y и затем Enter, когда вас спросят, хотите ли вы продолжить. Это гарантирует, что вы работаете с самыми последними обновлениями программного обеспечения. После установки обновлений вы можете продолжить установку среды рабочего стола. Есть два способа сделать это: Использование apt для установки пакетов Использование инструмента под названием tasksel, который помогает с установкой нескольких пакетов в одном скоординированном процессе (задачах) Любой из них позволит вам установить полную среду рабочего стола, которую вы выберете, как полный пакет, как если бы вы устанавливали настольную версию с нуля. Если вы хотите использовать tasksel, вы должны сначала установить его, используя следующую команду: sudo apt-get install tasksel После завершения этой задачи вы можете использовать tasksel для установки среды рабочего стола (также называемой DE - Desktop Environment). Установка Gnome Вы, наверное, знаете, что есть много окружений рабочего стола. Некоторым средам рабочего стола требуется больше системных ресурсов (например, GNOME), в то время как некоторые используют меньше системных ресурсов (например, Xfce, MATE и другие). Начнем с установки GNOME, поскольку он является рабочим столом Ubuntu по умолчанию. Если вы хотите использовать tasksel, выполните эту команду: sudo tasksel install ubuntu-desktop Если вы хотите использовать только apt, запустите эту команду: sudo apt install ubuntu-desktop Оба действия приведут к полной установке среды рабочего стола GNOME. Либо можно просто выполнить команду tasksel и попасть в интерфейс, в котором можно найти рабочий стол Ubuntu, и многие другие. Используйте клавишу пробела, чтобы выбрать его, нажмите Tab, чтобы выбрать OK внизу, затем нажмите Enter. Установка и настройка диспетчера дисплея После завершения процесса установки вам понадобится компонент, называемый Display Manager (диспетчер отображения), также известный как login manager. Этот инструмент будет отвечать за запуск сервера отображения и загрузку рабочего стола при управлении пользовательскими сеансами и аутентификацией. По умолчанию GNOME Desktop использует GDM3 в качестве диспетчера отображения, но он немного тяжелее с точки зрения ресурсов. Вы можете использовать что-нибудь более легкое и ресурсосберегающее. В этом случае давайте возьмем lightdm, диспетчеру отображения, независимому от платформы. Установите его с помощью apt: sudo apt install lightdm При установке lightdm система запросит диспетчер отображения по умолчанию, потому что одновременно может работать только один (но у вас может быть несколько установленных). Просто выберите lightdm из списка и нажмите OK. После выполнения этой задачи вы можете запустить Display Manager и загрузить графический интерфейс с помощью следующей команды: sudo service lightdm start Если вы хотите проверить, какой диспетчер отображения настроен в вашей системе, вы можете запустить: cat /etc/X11/default-display-manager Если все прошло по плану, у вас будет загружен экран приветствия. Введите свои учетные данные, и ваш рабочий стол будет запущен. Если вы хотите выключить графический интерфейс, откройте окно терминала и введите: sudo service lightdm stop Установка других окружений рабочего стола Мы можем выбрать разные рабочие столы, поэтому давайте рассмотрим некоторые альтернативы. KDE Plasma KDE - одна из самых популярных сред рабочего стола. Она обладает широкими возможностями настройки и чрезвычайно легковесна. Чтобы установить KDE Plasma, используйте следующую команду: sudo apt-get install kde-plasma-desktop Во время установки вам может быть предложено выбрать диспетчер отображения по умолчанию. С помощью клавиш со стрелками выберите нужный, а затем нажмите Enter. MATE MATE - это легкий рабочий стол, основанный на базовом коде GNOME2. Чтобы установить MATE, нужно запустить: sudo tasksel install ubuntu-mate-core или sudo apt install ubuntu-mate-core Lubuntu / LXDE/LXQT Lubuntu - очень легкий графический интерфейс. Используйте его, если вам нужен графический интерфейс, но вы хотите минимизировать влияние на системную память и процессор. Установите его с помощью этой команды: sudo tasksel install lubuntu-core или sudo apt install lubuntu-core Xubuntu Xubuntu - это производная Ubuntu, основанная на среде рабочего стола Xfce, легкая, простая, стабильная, но при этом легко настраиваемая. Если вы хотите попробовать, используйте следующую команду: sudo tasksel install xubuntu-core или sudo apt install xubuntu-core Помимо вышеуказанных, есть еще множество различных оболочек, которые устанавливаются подобным образом. Как удалить графический интерфейс с сервера Ubuntu? Если вы понимаете, что среда рабочего стола требует слишком много вычислительных ресурсов, вы можете удалить ранее установленные пакеты. Помните, что в некоторых случаях это может вызвать проблемы с зависимостями, поэтому сделайте резервную копию важных данных или создайте снепшот системы. sudo apt remove ubuntu-desktop sudo apt remove lightdm sudo apt autoremove sudo service lightdm stop Перезагрузите вашу систему, и вы должны будете вернуться к обычному входу в командную строку. Привет CLI!
img
Что такое парадигмы программирования? Это не более, чем просто замысловатое название для популярных способов и стилей организации процесса написания программного кода. Я постараюсь разбить эту тему на части и дать простое пояснение по каждой парадигме. Таким образом, вы сможете легко понять, о чем говорят люди, когда произносят такие слова, как «объектно-ориентированный», «функциональный» или «декларативный». Давайте начнем! Что такое парадигма программирования? Парадигмы программирования – это различные способы и стили, которые используются для организации программы или языка программирования. Каждая парадигма состоит из определенных структур, функций и взглядов на то, как следует решать известные задачи программирования. Вопрос о том, почему существует так много различных парадигм программирования, схож с вопросом о том, почему существует так много языков программирования. Определенные парадигмы лучше подходят для определенных типов задач. Именно поэтому имеет смысл использовать разные парадигмы для разных типов проектов. Кроме того, методики, которые составляют каждую парадигму, развивались с течением времени. Благодаря достижениям как в области программного, так и аппаратного обеспечения появились различные подходы к решению задач, которых раньше просто не было. И последняя причина – я думаю, это просто творческое начало в человеке. По своей натуре, нам просто нравится создавать новые вещи, улучшать то, что другие когда-то создали, и адаптировать инструменты под себя и свои предпочтения или просто делать их более эффективными (в нашем понимании). Все это привело к тому, что на сегодняшний день мы имеем огромное количество вариантов, которые могут помочь нам написать и структурировать ту или иную программу. Чем парадигма программирования не является? Парадигмы программирования – это не языки и не инструменты. Вы не сможете ничего «создать» с помощью парадигмы. Они больше похожи на некий набор образцов и руководящих принципов, о которых условились большое количество людей, которым они следовали и которые они подробно изложили. Язык программирования не всегда привязан к определенной парадигме. Есть языки, которые были созданы с учетом определенной парадигмы и имеют функции, которые облегчают программирование в этом контексте больше, чем другие (хороший пример – Haskel и функциональное программирование). Однако существуют и «многопарадигмальные» языки. Это означает, что вы можете адаптировать свой код, чтобы он подходил под какую-то из парадигм (хороший пример – JavaScript и Python). При этом парадигмы программирования не являются взаимоисключающими в том смысле, что вы можете без каких-либо проблем использовать приемы из различных парадигм одновременно. Популярные парадигмы программирования Теперь, когда вы знаете, что такое парадигмы программирования, а что к ним не относится, давайте рассмотрим самые популярные из них, их характеристики и сравним их. Имейте в виду, что этот список не полный. Существуют и другие парадигмы программирования, которые мы здесь рассматривать не будем. Здесь я расскажу вам только о самых популярных и широко используемых. Императивное программирование Императивное программирование – это набор подробных инструкций, которые даются компьютеру, чтобы тот выполнил их в заданном порядке. Этот тип программирования называется «императивным», потому что мы некоторым образом указываем компьютеру (как программисты), что он должен делать. Императивное программирование концентрируется на описании того, как программа работает, шаг за шагом. Допустим, вы хотите испечь торт. Ваша императивная программа для такого рода задачи может выглядеть следующим образом: 1- Pour flour in a bowl 2- Pour a couple eggs in the same bowl 3- Pour some milk in the same bowl 4- Mix the ingredients 5- Pour the mix in a mold 6- Cook for 35 minutes 7- Let chill Воспользуемся конкретным примером и предположим, что мы хотим отфильтровать массив чисел так, чтобы остались только числа, которые больше 5. Наш императивный код тогда будет выглядеть следующим образом: const nums = [1,4,3,6,7,8,9,2] const result = [] for (let i = 0; i < nums.length; i++) { if (nums[i] > 5) result.push(nums[i]) } console.log(result) // Output: [ 6, 7, 8, 9 ] Обратите внимание, что мы указываем программе, что нужно перебрать каждый элемент массива, сравнить каждый из них с 5 и, если элемент больше 5, то поместить его в конечный массив. Наши инструкции предельно детализированы и конкретны, и именно это и является императивным программированием. Процедурное программирование Процедурное программирование – это производное от императивного программирования только с функциями (также известных как «процедуры» или «подпрограммы»). Процедурное программирования предлагает пользователю разделить выполнение программы на функции, чтобы оптимизировать модульный принцип организации. Вернемся к нашему примеру с тортом. Процедурная программа для этого примера будет выглядеть следующим образом: function pourIngredients() { - Pour flour in a bowl - Pour a couple eggs in the same bowl - Pour some milk in the same bowl } function mixAndTransferToMold() { - Mix the ingredients - Pour the mix in a mold } function cookAndLetChill() { - Cook for 35 minutes - Let chill } pourIngredients() mixAndTransferToMold() cookAndLetChill() Как вы можете видеть, благодаря реализации функций, мы можем просто прочитать три вызова функций в конце файла и понять, что делает наша программа. Такое упрощение и абстрактное представление является одним из преимуществ процедурного программирования. Однако внутри функций находится все тот же императивный код. Функциональное программирование Функциональное программирование продвигает концепцию создания функций немного дальше. В функциональном программировании функции рассматриваются как «полноправные граждане». Это означает, что их можно присваивать переменным, передавать в качестве аргумента и возвращать в качестве результата других функций. Еще одна ключевая концепция – это идея чистых функций. Чистая функций – это функция, которая, чтобы получить результат, полагается только на свои входные данные. И при одних и тех же входных данных всегда будет один и тот же результат. Кроме того, эти функции не имеют никаких побочных эффектов (то есть не вносят никаких изменений вне контекста функции). С учетом всех этих концепций, функциональное программирование призывает писать программы с помощью функций. Оно также поддерживает идею о том, что модульность кода и отсутствие побочных эффектов облегчают определение и разделение обязанностей внутри кодовой базы. Таким образом, это облегчает сопровождение кода. Вернемся к примеру с фильтрацией массива. В императивной парадигме мы можем использовать внешнюю переменную для хранения результата функции, что по сути может считаться побочным эффектом. const nums = [1,4,3,6,7,8,9,2] const result = [] // External variable for (let i = 0; i < nums.length; i++) { if (nums[i] > 5) result.push(nums[i]) } console.log(result) // Output: [ 6, 7, 8, 9 ] Для того, чтобы преобразовать это в функциональное программирование, мы можем сделать следующее: const nums = [1,4,3,6,7,8,9,2] function filterNums() { const result = [] // Internal variable for (let i = 0; i < nums.length; i++) { if (nums[i] > 5) result.push(nums[i]) } return result } console.log(filterNums()) // Output: [ 6, 7, 8, 9 ] Это практически тот же самый код, но мы проворачиваем все итерации внутри функции, в которой мы также сохраняем и массив результатов. Таким образом, мы можем гарантировать, что функция не будет ничего менять за своими пределами. Она создает переменную только для обработки своей собственной информации, и после завершения своей работы удаляет ее. Декларативное программирование Декларативное программирование скрывает всю сложность и приближает языки программирования к человеческому языку и мышлению. Это абсолютная противоположность императивному программированию, хотя бы потому что программист дает инструкции не о том, как компьютеру следует решать задачу, а о том, какой требуется результат. Будет намного понятнее, если мы приведем пример. Воспользуемся примером с фильтрацией массива. Декларативный подход здесь будет выглядеть следующим образом: const nums = [1,4,3,6,7,8,9,2] console.log(nums.filter(num => num > 5)) // Output: [ 6, 7, 8, 9 ] Обратите внимание, что, используя функцию фильтрации filter, мы явно не указываем компьютеру перебирать массив или сохранять значения в отдельном массиве. Мы просто говорим о том, что мы хотим («filter») и условие, которое необходимо выполнить («num > 5»). Что хорошего в таком подходе? Его легче читать и понимать, и зачастую он более емкий в записи. Хорошими примерами декларативного кода являются функции filter, map, reduce и sort в JavaScript. Еще один хороший пример – современные фреймворки/библиотеки JS, такие как React. Посмотрите, например, на этот код: <button onClick={() => console.log('You clicked me!')}>Click me</button> Здесь у нас есть кнопка (button) с приемником событий, который запускает функцию console.log при нажатии кнопки. Синтаксис JSX (то, что использует React) совмещает HTML и JS. Это упрощает и ускоряет написание приложений. Но это не то, что браузеры читают и выполняют. Код React позже преобразуются в обычный HTML и JS, а вот это уже то, с чем работают браузеры. JSX является декларативным, поскольку его цель заключается в том, чтобы предоставить разработчикам более удобный и эффективный интерфейс для работы. Здесь также важно отметить, что в декларативном программировании компьютер все равно обрабатывает информацию как императивный код. Если снова вернуться к примеру с массивом, то компьютер по-прежнему выполняет итерацию по массиву, как в цикле for, но нам, как программистам, не нужно писать это напрямую. Декларативное программирование скрывает всю сложность от программиста. Объектно-ориентированное программирование Одной из самых популярных парадигм программирование является объектно-ориентированное программирование (ООП). Основная концепция ООП заключается в разделении понятий на сущности, которые описываются как некие объекты. Каждая сущность группирует заданный набор информации (свойств) и действий (методов), которые может выполнять эта сущность. ООП широко использует классы. Классы - это способ создания новых объектов с помощью макета или шаблона, который задает программист. Объекты, которые были созданы с помощью класса, называются экземплярами. Вернемся к примеру с приготовлением пищи на псевдокоде. Предположим, что в нашей пекарне у нас есть главный повар (по имени Фрэнк) и помощник повара (по имени Энтони). У каждого их них есть определенные обязанности. Если бы мы использовали ООП, то наша программа бы выглядеть следующим образом: // Create the two classes corresponding to each entity class Cook { constructor constructor (name) { this.name = name } mixAndBake() { - Mix the ingredients - Pour the mix in a mold - Cook for 35 minutes } } class AssistantCook { constructor (name) { this.name = name } pourIngredients() { - Pour flour in a bowl - Pour a couple eggs in the same bowl - Pour some milk in the same bowl } chillTheCake() { - Let chill } } // Instantiate an object from each class const Frank = new Cook('Frank') const Anthony = new AssistantCook('Anthony') // Call the corresponding methods from each instance Anthony.pourIngredients() Frank.mixAndBake() Anthony.chillTheCake() Преимущество ООП заключается в том, что оно облегчает понимание программы за счет четкого разделения задач и обязанностей. Итоги Как мы увидели, парадигмы программирования – это различные способы решения задач программирования и организации нашего кода. Одними из самых популярных и широко используемых на сегодняшний день парадигм являются императивная, процедурная, функциональная, декларативная и объектно-ориентированная. Знание о том, что они из себя представляют, полезно для общего развития, а также для лучшего понимания других тем, связанных с программированием.
img
Сразу к делу. На рисунке 1 показана базовая конфигурация STP (Spanning Tree Protocol). Рис. 1 Базовая конфигурация STP По умолчанию функция STP коммутатора включена. Если STP отключен, используйте команду stp enable в системном режиме, чтобы включить STP. # На S1 установите режим работы связующего дерева на STP. Используйте режим stp {mstp | rstp | stp}, с помощью которой вы можете установить режим MSTP, RSTP или STP. По умолчанию установлен режим MSTP. <Quidway> system-view [Quidway] sysname S1 [S1] stp mode stp # На S2 установите режим работы связующего дерева на STP. <Quidway> system-view [Quidway] sysname S2 [S2] stp mode stp # На S3 установите режим работы связующего дерева на STP. <Quidway> system-view [Quidway] sysname S3 [S3] stp mode stp # На S4 установите режим работы связующего дерева на STP. <Quidway> system-view [Quidway] sysname S4 [S4] stp mode stp Даже если STP автоматически выберет корневой мост, мы сначала назначим коммутатор ближе к центру сети. Структура сети показана на рис. 1 простая: S1 и S2 подключены через Интернет, а основные коммутаторы, S3 и S4, являются коммутаторами доступа. Мы можем изменить приоритет моста S1, чтобы гарантировать, что S1 будет выбран в качестве корневого моста. Команда stp priority priority используется для установки приоритета моста устройства; значение приоритета колеблется от 0 до 61440 с шагом 4096. Значение по умолчанию-32 768. Чем меньше приоритет, тем больше вероятность того, что устройство будет выбрано в качестве корневого моста. Вы также можете использовать команду stp root primary для обозначения S1 в качестве корневого моста. После выполнения команды на устройстве значение приоритета моста устройства автоматически устанавливается равным 0. Приоритет моста устройства не может быть изменен после этого с помощью команды stp priority priority. [S1] stp root primary Затем мы назначим S2 вторичным корневым мостом, чтобы S2 заменил S1 в качестве нового корневого моста в случае сбоя. После запуска на устройстве команды stp root secondary значение приоритета моста устройства автоматически устанавливается на 4096 и не может быть изменено после этого с помощью команды stp priority priority. [S2] stp root secondary На этом базовая конфигурация STP сети завершена. Чтобы проверить состояние и статистику дерева SPT, вы можете запустить display stp [interface interface-type interface-number] [brief] На S1 используйте команду display stp brief для отображения основной информации STP. В выводимых данных видно, что, поскольку S1 является корневым мостом, GE0 / 0/2 и GE0 / 0/1 S1 являются назначенными портами в состоянии normal forwarding. Следующий вывод - это основная информация STP S4. Интерфейс GE0/0/2 коммутатора S4 является корневым портом в состоянии normal forwarding. Однако его порт GE0/0/1 является альтернативным портом в состоянии блокировки.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59