По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы уже писали статьи о том, как зарегистрировать транки от таких провайдеров VoIP услуг как : МТТ, Телфин, SIPNET и другие. А сегодня расскажем как подключиться к SIP-сервису от оператора МегаФон - МультиФон на примере FreePBX 14. Почему то, именно с данным сервисом у многих возникают проблемы. Поэтому, дабы помочь нашим дорогим читателям и снять нагрузку с технической поддержки МегаФона, мы решили написать эту статью :) Предыстория МультиФон – это SIP-сервис от оператора мобильной связи МегаФон, с которым они вышли на рынок в 2010 году. Идея проста – связать сервисы сотовой связи оператора и VoIP. То есть организовать возможность приёма и совершения вызовов не только через сеть GSM, но и через Интернет. При этом средства списываются с мобильного номера. Помимо этого можно также совершать видео-звонки, а также отправлять SMS и MMS сообщения. Подключение и настройка Подключить МультиФон может любой обладатель мегафоновской SIM-карты. Для этого достаточно просто набрать комбинацию *137# и выбрать опцию “Подключить”. Через какое-то время Вам прилетит SMS с именем пользователя и паролем. Имя пользователя будет совпадать с номером мобильного, закреплённого за Вашей SIM-картой. После этого, логинимся во FreePBX и начинаем настраивать транк. Переходим в раздел Connectivity → Trunks. Далее нажимаем Add Trunk → Add Chan_sip trunk. Перед нами откроются параметры добавления нового транка. На вкладке General указываем желаемое название транка (Trunk Name) и Outbound CallerID - номер, который увидят абоненты, вызываемые через этот транк. Далее переходим сразу на вкладку sip Settings и настраиваем вкладку Outgoing, т.е параметры, которые мы будем отправлять на сервера МультиФона. В поле Trunk Name повторно введите название транка. А в поле PEER Details необходимо указать следующее: username=79261234567 type=peer secret=<SUPER_SECURE_PASS.> host=sbc.megafon.ru fromuser=79261234567 fromdomain=multifon.ru port=5060 qualify=yes insecure=invite,port canreinvite=no Где: username- имя пользователя, которые пришло Вам в SMS, которое совпадает с номером телефона; type - тип линии, которая будет обрабатывать входящие и исходящие вызовы, проходящие через Asterisk. Авторизация при входящих будет осуществляться по средствам сопоставления IP и порта; secret - пароль, который Вы получили по SMS; host - адрес сервера регистрации; fromuser - имя пользователя в поле FROM заголовка SIP; fromdomain - адрес домена для поля FROM заголовка SIP; port - порт, на котором сервер регистрации слушает протокол SIP; qualify - параметр, отвечающий за проверку доступности хоста; insecure - отвечает за проверку параметров при аутентификации. port, invite – означает, что аутентификация будет осуществляться без проверки номера порта и входящих сообщений INVITE; canreinvite - параметр, запрещающий повторную отправку сообщений INVITE, когда соединение уже установлено; Далее переходим на вкладку Incoming и прописываем такую строчку в поле Register String: 79261234567@multifon.ru:<SUPER_SECURE_PASS.>:79261234567@193.201.229.35:5060/79261234567 После чего нажимаем Submit и Apply Config. Далее необходимо перейти в модуль Settings → Asterisk SIP Settings → Chan SIP Settings и найди параметр Enable SRV Lookup, его нужно поставить в Yes После всех выполненных действий, Вы должны будете увидеть в Registries две регистрации – одну на multifon.ru, а другую на прокси сервере – sbc.megafon.ru. Можно также убедиться в том, что транк успешно зарегистрирован на вкладке Peers: Кстати, интересная особенность, которую можно увидеть с помощью утилиты sngrep, в том, что МультиФон использует отдельные сервера для сигнализации и RTP-трафика. А также, отправляет пакеты 407 Proxy Authentication Required, сообщающие о том, что для совершения вызова необходима аутентификация на прокси сервере. Вот посмотрите:
img
В проводной сети любые два устройства, которые должны взаимодействовать друг с другом, соединяются проводом. В качестве провода может выступать медный или волоконно-оптический кабель. Функциональные возможности по передаче данных по проводу, ограничены физическими свойствами провода. Строгие требования к проводам Ethernet определены в стандарте IEEE 802.3, в котором описаны способы подключения устройств, способы отправки и получения данных по проводным соединениям. Проводные сети имеют ограничения для передачи данных по каналам связи, что не способствует, успешной коммуникации. Качество передачи данных, их успешная доставка до получателя, очень сильно зависит от типа и размера провода, количества витков, межвиткового расстояния, и максимальной длины кабеля. Все эти требования должны соответствовать стандарту IEEE 802.3. Проводная сеть является ограниченной по длине и количеству подключаемых устройств, а именно напрямую по проводу могут подключиться только два устройства. К основным недостаткам проводных сетей так же относится стационарность сетевого оборудования и компьютеров. Это означает, что соединенные проводами устройства, не могут легко перемещаться по помещению. Все устройства привязаны к сетевым разъемам. В современном мире очень много стало мобильных устройств и поэтому нецелесообразно привязывать их к конкретной розетке или разъёму коммуникационного оборудования. Понятие беспроводной сети следует из ее названия, то есть данная сеть устраняет необходимость в проводе. Первостепенным становится удобство и мобильность, давая пользователям свободу перемещения в любом направлении, оставаясь подключенными к сети. Пользователь может использовать любое беспроводное устройство, которое имеет возможность подключения к сети. Передача данных в беспроводных сетях осуществляется "по воздуху" при отсутствии препятствий и помех. При использовании беспроводной среды передачи данных, для их качественной доставки необходимо учитывать две вещи: Беспроводные устройства должны соответствовать единому стандарту (IEEE 802.11). Беспроводное покрытие должно охватывать ту область, на которой планируется использование устройствами. Топологии Wireless LAN Беспроводная связь осуществляется "по воздуху" посредством радиосигналов. Предположим, что одно устройство, передатчик, посылает радиосигналы другому устройству, приемнику. Как показано на рисунке, связь между передатчиком и приемником осуществляется в любое время, если оба устройства настроены на одну и ту же частоту (или канал) и используют одну и ту же схему для передачи данных между ними. Все это выглядит просто, за исключением того, что на самом деле это не удобно и не практично. Для эффективного использования беспроводной сети данные должны передаваться в обоих направлениях, как показано на рисунке. Для отправки данных с устройства А на устройство В, устройство В должно дождаться прихода данных к себе и когда канал освободится отправить на устройство А. В беспроводной связи, при одновременной передаче данных, могут возникнуть помехи, т.е. передаваемые сигналы будут мешать друг другу. Чем больше беспроводных сетей, тем выше вероятность возникновения помех. Например, на рисунке изображены четыре устройства, работающие на одном и том же канале, и то, что может произойти, если часть из них или все одновременно начнут передавать данные. Вышенаписанное сильно напоминает нам традиционную (некоммутируемую) локальную сеть Ethernet, где несколько хостов могут подключаться к общему ресурсу и совместно использовать канал передачи данных. Чтобы эффективно использовать общий ресурс, все хосты должны работать в полудуплексном режиме, во избежание столкновений с другими уже выполняемыми передачами. Побочным эффектом является то, что ни один хост не может передавать и принимать одновременно в общей среде. Аналогичное происходит и в беспроводной сети. Так как несколько хостов могут совместно использовать один и тот же канал, они также совместно используют "эфирное время" или доступ к этому каналу в любой момент времени. Что бы избежать конфликтных ситуаций и создание помех, хосты должны передавать данные в определенный момент времени, ожидая освобождения канала. Для работы в беспроводных сетях все устройства должны соответствовать стандарту 802.11. Важно понимать, что по умолчанию беспроводная среда не учитывает количество устройств и не контролирует устройства, которые могут передавать данные. Любое устройство, имеющее адаптер беспроводной сети, может в любой момент подключиться к беспроводной сети. Как минимум, беспроводная сеть должна уметь определять, что каждое устройство, подключаемое к каналу передачи данных, поддерживает общий набор параметров. Кроме того, должен быть способ контроля устройств (и пользователей), которым разрешено использовать беспроводную среду и методы, используемые для обеспечения безопасности беспроводной передачи данных. Базовый набор услуг (BSS) Идея состоит в том, чтобы сделать каждую беспроводную зону обслуживания замкнутой для группы мобильных устройств, которая формируется вокруг фиксированного устройства. Прежде чем устройство сможет подключиться, оно должно объявить о своих возможностях, а затем получить разрешение на подключение. В стандарте 802.11 это называется базовым набором услуг (BSS, Basic Service Set). В центре каждого BSS находится беспроводная точка доступа (AP). AP работает в инфраструктурном режиме, что означает, что он предлагает услуги, необходимые для формирования инфраструктуры беспроводной сети. AP также устанавливает свой BSS по одному беспроводному каналу. AP и члены BSS должны использовать один и тот же канал для правильной связи. Поскольку работа BSS зависит от точки доступа, то BSS ограничена областью, равной расстоянию, на которое может распространяться сигнал точки доступа. Это называется базовой зоной обслуживания (BSA) или ячейкой. На рисунке ячейка показана в виде окружности, в центре которой имеется точка доступа. Ячейки могут выглядеть по-разному: зависит от устройств, подключенных к AP; зависит от физического окружения, которое может повлиять на сигналы AP; Точка доступа (АР) служит единственной точкой контакта для каждого устройства, которое хочет использовать BSS. Она объявляет о существовании BSS, чтобы устройства могли найти его и попытаться присоединиться. Для этого AP использует уникальный идентификатор BSS (BSSID), основанный на собственном MAC-адресе. Кроме того, точка доступа присваивает беспроводной сети идентификатор набора услуг (SSID-текстовую строку, содержащую логическое имя). Представьте себе, что BSSID - это машинный код, который однозначно идентифицирует BSS (AP). А SSID - это символьная строка, задаваемая человеком, который идентифицирует беспроводную службу. Членство в BSS называется ассоциацией. Беспроводное устройство должно отправить запрос на ассоциацию точке доступа, и точка доступа должна либо предоставить, либо отклонить запрос. При разрешении, устройство становится клиентом, или станцией 802.11 (STA) в BSS. И что же дальше? Пока клиент беспроводной сети остается подключенным к BSS, все данные, приходящие к нему и исходящие от клиента, проходят через точку доступа, как показано на рисунке. Используя BSSID в качестве адреса источника или назначения, фреймы данных можно ретранслировать в точку доступа или из нее. На рисунке изображено движение трафика внутри BSS. BSS содержит четыре устройства, подключенные к точке доступа по беспроводному соединению. Идентификатор набора служб (SSID) носит название "Моя сеть". Базовый идентификатор набора услуг (BSSID) - это MAC-адрес точки доступа d4:20:6d:90:ad:20. Любой клиент, связанный с BSS, не может напрямую связаться с любым другим клиентом в BSS. Весь трафик проходит через точку доступа. Почему же два клиента должны общаться именно через точку доступа, а не напрямую? Это связано с тем, что все подключения через точку доступа и BSS стабильны и контролируются. Система распределения Нужно учитывать то, что BSS имеет одну точку доступа AP и не имеет явного подключения к обычной сети Ethernet. В этом случае точка доступа и связанные с ней клиенты образуют автономную сеть. Но роль точки доступа не ограничивается только управлением BSS, рано или поздно появится необходимость взаимодействия беспроводных клиентов с другими устройствами, которые не являются членами BSS. К счастью, точка доступа имеет возможность подключаться к сети Ethernet, как по беспроводным каналам, так и по проводам. Стандарт 802.11 позволяет подключаться по проводам Ethernet и использовать их в качестве распределительной системы (DS) для беспроводной BSS (см. рис.6). Вообще можно сказать, что точка доступа выступает в качестве моста между разнородными средами передачи данных (проводной и беспроводной). Проще говоря, точка доступа отвечает за сопоставление виртуальной локальной сети (VLAN) с SSID. На рисунке точка доступа сопоставляет VLAN 10 с беспроводной локальной сетью, используя SSID "Моя сеть". Клиенты, связанные с SSID "Моя сеть", будут, подключены к VLAN 10. Рисунок иллюстрирует систему распределения, поддерживающую BSS. Система распределения состоит из коммутатора третьего уровня в сети VLAN 10. Данный коммутатор подключен к интернету с помощью кабеля. AP (точка доступа) подключается к коммутатору так же с помощью кабеля. Точка доступа формирует BSS (базовый набор услуг). Устройства, входящие в область BSS - это все устройства, подключенные по беспроводной связи к точке доступа. Идентификатор SSID "Моя сеть" и BSSID- d4:20:6d:90:ad:20. Данный принцип подключения позволяет сопоставлять несколько VLAN с несколькими SSID. Для этого точка доступа должна быть соединена с коммутатором магистральным каналом. На рисунке 7 VLAN 10, 20 и 30 соединены с точкой доступа через распределительную систему (DS). Точка доступа использует тег 802.1Q для сопоставления номеров VLAN с соответствующими SSID. Например, VLAN 10 сопоставляется с SSID "Моя сеть", VLAN 20 сопоставляется с SSID "Чужая сеть" и VLAN 30 к SSID "Гости". На рисунке показан процесс поддержки нескольких SSID одной точкой доступа: Несмотря на то, что точка доступа поддерживает одновременно несколько логических беспроводных сетей, каждый из SSID работают в одной зоне (области). Причина в том, что точка доступа использует один и тот же передатчик, приемник, антенну и канал для каждого SSID. Однако это утверждение может ввести в некоторое заблуждение: несколько SSID могут создать иллюзию масштабируемости сети. Хоть и беспроводные клиенты могут быть распределены по разным SSDI, но все же они используют совместно одну точку доступа. А это в свою очередь приводит к "борьбе" за эфирное время на канале. Расширенный набор услуг Обычно одна точка доступа не может охватить всю зону (область), где могут находиться клиенты. Например, потребуется беспроводное покрытие на всем этаже торгового центра, гостиницы, больницы или другого крупного здания. Что бы покрыть большую площадь, которую может охватить одна ячейка точки доступа, просто необходимо добавить больше точек доступа и распределить их по этажу (этажам). Когда точки доступа расположены в разных местах, все они могут быть связаны между собой коммутируемой инфраструктурой. В стандарте 802.11 эта возможность называется расширенным набором услуг (extended service set (ESS)) Расширенный набор услуг показан на рисунке. Идея состоит в том, чтобы заставить несколько точек доступа взаимодействовать так, чтобы беспроводное подключение было не заметным для клиента. В идеале, любые SSID, определенные на одной точке доступа, так же должны быть определены на всех остальных точках доступа в ESS (Extended Service Set). В противном случае клиенту приходилось бы каждый раз переподключаться, как только бы он попадал в ячейку другой точки доступа. Как видно из рисунка, что каждая ячейка имеет уникальный BSSID, но обе ячейки имеют общий SSID. Независимо от местоположения клиента в пределах ESS, SSID останется тем же самым, но клиент всегда может отличить одну точку доступа от другой. На рисунке показан принцип работы расширенного набора услуг. Коммутатор (VLAN 10) подключен к интернету по кабелю. Две точки доступа подключены к этому коммутатору так же проводами. Эти точки располагаются рядом так, что области их действия пересекаются. BSS двух точек доступа, объединены, и образуют расширенный набор услуг (ESS). AP-1 имеет BSSID d4:20:6d:90:ad:20, а её базовый набор услуг-BSS-1. Точка доступа подключена к клиенту по беспроводной сети. AP2 имеет BSSID e6:22:47:af:c3:70, а её базовый набор услуг-BSS-2. Точка доступа подключена к клиенту по беспроводной сети. SSID обоих BSS - это "Моя сеть". Переход клиента от одной точки доступа к другой называется роумингом. В ESS беспроводной клиент может связываться с одной точкой доступа, пока он физически расположен рядом с этой точкой. При перемещении клиента в другое место, он автоматически подключается к ближайшей точке доступа. Переход от одной точки доступа к другой называется роумингом. Имейте в виду, что каждая точка предлагает свой собственный BSS на своем собственном канале, чтобы предотвратить помехи между точками доступа. Так как беспроводное устройство (клиентское) может перемещаться от одной точки доступа к другой, оно должно уметь сканировать доступные каналы, чтобы найти новую точку доступа (и BSS) для переподключения. Фактически клиент перемещается от BSS к BSS и от канала к каналу. Независимый базовый набор услуг Обычно беспроводная сеть использует точку доступа для организации, контроля и масштабируемости. Иногда это невозможно или неудобно в различных ситуациях. Например, два человека, которые хотят обменяться электронными документами на встрече, могут не найти доступную BSS или не смогут пройти аутентификацию в сети. Кроме того, многие принтеры могут печатать документы по беспроводной сети, не полагаясь на обычный BSS или точку доступа. Стандарт 802.11 позволяет двум или более беспроводным клиентам напрямую связываться друг с другом, без каких-либо посредников сетевого подключения. Это называется специальной беспроводной сетью (ad hoc) или независимым базовым набором услуг (IBSS), как показано на рисунке. Чтобы это работало, одно из устройств должно стать главным и разослать в эфир свое сетевое имя, необходимые параметры беспроводного подключения, так же как это сделала бы точка доступа. Любое другое устройство может затем присоединиться по мере необходимости. IBSS предназначены для организации небольшой беспроводной сети для восьми - десяти устройств. Эта сеть не масштабируема.
img
В сегодняшней статье мы еще раз коснемся сетей ISDN (Integrated Services for Digital Network). Как известно, ISDN – это набор протоколов, который объединяет цифровую телефонию и сервисы передачи данных. Основная идея ISDN – преобразование телефонной сети в цифровую форму для передачи аудио, видео и текстовых сообщений через существующие телефонные линии. Конечная цель ISDN – формирования Глобальной сети (WAN), которая обеспечивает универсальное непрерывное соединение через цифровую среду. В ISDN существует два типа интерфейсов для организации доступа к ресурсам сети – PRI (Primary Rate Interface) и BRI Basic Rate Interface, котором и пойдет речь. Итак, BRI – это тип интерфейса в сети ISDN, обеспечивающий предоставление двух основных цифровых каналов (ОЦК) по 64 кбит/с каждый, именуемых также каналами “B”, и однополосных канал, выделенный для передачи цифровой сигнализации со скоростью 16 кбит/с, который называют каналом “D”. Наиболее распространенный тип цифровой сигнализации, применяемый в сетях ISDN - DSS1 (Euro ISDN). Таким образом, интерфейс доступа BRI идентифицируют как 2B+D, а максимальная скорость передачи по данному интерфейсу составляет 128 + 16 = 144 кбит/с. Стоит отметить, что интерфейс BRI предназначен в первую очередь для использования в абонентских линиях, аналогичных тем, которые уже давно используются для голосовой телефонной связи. Предоставляется в основном для абонентов жилищного сектора и малых офисов. С физической точки зрения, интерфейс BRI делится на несколько частей. 1) Прокладка кабеля непосредственно от ISDN терминала до сетевого окончания NT (Network Termination) - S/T интерфейс (S0) Данный процесс описывается в рекомендации I.430, разработанной Международным Союзом Электросвязи (ITU). Интерфейс S/T использует 4 провода, одна пара выделяется под передачу (uplink), а другая под прием (downlink). Осуществляет полнодуплексный режим взаимодействия. Рекомендация I.430 описывает определение 48-битных пакетов, включая 16 бит от канала B1, 16 бит от канала B2, 4 бит от канала D, а также 12 бит, использующихся для нужд синхронизации. Эти пакеты отсылаются с частотой 4 КГц, в результате чего, общий битрейт 192 кбит/c, обеспечивает скорость передачи, перечисленных выше данных, с максимально возможной пропускной способностью – 144 кбит/c. Интерфейс S0 позволяет организовать соединение типа точка-точка или точка – множество точек. Максимальная длина – 900 м (точка-точка), 300 м (точка – множество точек) 2) Передача от сетевого окончания NT до центрального офиса – U интерфейс Интерфейс U использует два провода. Общий битрейт – 160 кбит/с; пропускная способность 144 кбит/с, 12 кбит/c выделяется для нужд синхронизации и 4 кбит/с для сигналов обслуживания. Сигналы от U интерфейса в точке отправки кодируются двумя способами модуляции, исходя их используемых стандартов в той или иной стране. Так в Северной Америке, Италии и Швейцарии используется механизм 2B1Q, и 4B3T в остальных странах. В зависимости от применяемой длины кабеля существует три разновидности U интерфейсов – UpN, Up0 и Uk0 . Интерфейс Uk0 использует один пару проводов с эхоподавлением для длинного кабеля последней мили между АТС и сетевым окончанием NT . Максимальная длина этого промежутка BRI составляет от 4 до 8 км.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59