По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Итак, вы полностью укомплектовали и настроили ваш умный дом. И конечно, вам нравится периодически показывать выпендриваться перед друзьям, как круто включать лампы, проигрывать видео и фильмы подсказкой голосовому помощнику, приготовить кофе или регулировать термостат коснувшись приложения на экране смартфона. Поздравляем! Но если вы любитель автоматизации (как и мы), который редко останавливается на достигнутом, то возможно будете разочарованы количеством необходимых программ, которые нужно загрузить, интерфейсов, которые вам придётся усваивать, чтобы управлять гаджетами. Скорее всего, будут отдельные приложения для управления освещением, медиацентром, термостатом и приложение Google Home, который изо всех сил (но безнадежно) старается собрать всё это воедино. Большая вероятность того, что некоторые приложения будут несовместимы с другими и, вероятно, многие из них не будут работать, если они не в одной сети с гаджетом. Представьте если бы мы смогли управлять всем этим из одного интерфейса, на засоряя телефон или компьютер сотнями приложений, через интерфейс, который доступен как на смартфонах, так и на компьютерах, а также с помощью сторонних сценариев вне зависимости от того, находимся ли мы в одной сети с умным домом или нет. Интерфейс, который был бы легким и простым в использовании? А что если мы будем делать это через мессенджер или чат? В конце концов, разве не легче было бы контролировать наш дом, гаджеты и облачные сервисы через тот же интерфейс, который мы используем для отправки фотографий котиков нашим друзьям, и через бот, полностью адаптированный к нашим потребностям? В этой статье я покажу вам, как настроить команды и процедуры в дополнение к существующим сетапам умного дома. В данном руководстве мы используем два основных инструмента: Telegram: существует много мессенджеров и платформ, но до сих пор попытки многих из них (Facebook Messenger, Whatsapp, Hangouts и т.д.) в предоставлении пригодного для разработчиков API, мягко говоря, были тщетны. Ушли те дни, когда все использовали XMPP или IRC в качестве своего мессенджер. Сегодняшний мир мессенджеров очень разнообразен. Кроме того, поскольку в интересах многих крупных игроков создавать изолированные ИТ экосистемы, наиболее часто используемые решения не поставляются с официально поддерживаемыми API/интерфейсами разработчиков. Мало того: некоторые из них активно отговаривает пользователей от использования чего-либо, кроме официального приложения, для взаимодействия с платформой (почитайте, как Whatsapp может забанить вас). В этом чрезвычайно разнообразном мире, состоящем из нескольких несвязанных островов, Telegram представляет собой радостное исключение: их официальный bot API хорошо задокументирован и поддерживается, и для тех, кто знает немного программирования, очень легок в интеграции. Platypush: Platypush поставляется с плагином для Telegram и бэкэндом. Так что давайте начнем и создадим первый бот для автоматизации управления домом! Создание Telegram-бота Начните беседу с Botfather. Наберите /start, а затем /newbot для создания нового бота. Задайте боту ник и имя. Вы получите ссылку, чтобы начать беседу с вашим ботом и уникальный API-ключ. Сохраните его где-нибудь, так как он нам понадобится для конфигурации плагина platypush. Конфигурация бота в platypush 1. Установите platypush с основными расширения и интеграцией с Telegram: pip install 'platypush[http,db,telegram]' apt-get install redis-server [sudo] systemctl start redis [sudo] systemctl enable redis 2. Изучите platypush хотя бы немного, если еще не сделали этого. Определите несколько вещей, которыми вы хотите управлять/автоматизировать - источники света, музыку, датчики, базу данных, роботы - и установите/настройте соответствующие расширения. В этой статье мы рассмотрим, как настроить наш новый бот для управления освещением Philips Hue, воспроизведением музыки и потоковой передачей PiCamera. 3. Добавьте настройки Telegram в файл ~/.config/platypush/config.yaml: chat.telegram: api_token: <your bot token> backend.chat.telegram: enabled: true Бэкэнд-система позволяет получать события (например, новые сообщения, вложения, запросы и т.д.) и создавать на них пользовательские "хуки". Плагин позволяет писать вам чаты, программно отправлять сообщения и вложения, администрировать каналы и т.д. Допустим, мы хотим, чтобы бот реализовал следующие команды: /start Приветствие пользователя /help Показать доступные команды /lights_on Включить свет /lights_off Выключить свет /music_play Включить музыку /music_pause Приостановить музыку /music_next Перейти на следующую песню /music_prev Перейти на предыдущую песню /start_streaming Начать удаленное вещание PiCamera /stop_streaming Остановить удалённое вещание PiCamera Всё что мы должны сделать это создать действие в конфигурационном файле platypush config.yaml. В этом контексте вы должны: Установить и настроить плагины Philips Hue, mopidy и PiCamera: pip install 'platypush[hue,mpd,picamera]' # Hue lights configuration light.hue: # Hue bridge IP address bridge: 192.168.1.10 # Default groups to control groups: - Living Room # MPD/Mopidy configuration music.mpd: host: localhost port: 6600 # PiCamera configuration camera.pi: vflip: False hflip: False Чтобы не засорять файл config.yaml, создайте новый файл с названием ~/.config/platypush/include/bot.yaml: # /start command handler event.hook.OnTelegramStartCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: start then: - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "Welcome! Type /help to see the available commands" # /help command handler event.hook.OnTelegramHelpCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: help then: - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "Available commands: - /lights_on - /lights_off - /music_play [resource] - /music_pause - /music_prev - /music_next - /start_streaming - /stop_streaming " # /lights_on command handler event.hook.OnTelegramLightsOnCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: lights_on then: - action: light.hue.on - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "Lights turned on" # /lights_off command handler event.hook.OnTelegramLightsOffCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: lights_off then: - action: light.hue.off - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "Lights turned off" # /music_play command handler event.hook.OnTelegramMusicPlayCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: music_play then: - if ${cmdargs}: - action: music.mpd.play args: resource: cmdargs[0] - else: - action: music.mpd.play - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "Music playing" # /music_pause command handler event.hook.OnTelegramMusicPauseCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: music_pause then: - action: music.mpd.pause - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "Music paused" # /music_prev command handler event.hook.OnTelegramMusicPrevCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: music_prev then: - action: music.mpd.previous - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "Playing previous track" # /music_next command handler event.hook.OnTelegramMusicNextCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: music_next then: - action: music.mpd.next - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "Playing next track" # /start_streaming command handler event.hook.OnTelegramCameraStartStreamingCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: start_streaming then: - action: camera.pi.start_streaming args: listen_port: 2222 - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "PiCamera streaming started. Check it out with vlc tcp/h264://hostname:2222" # /stop_streaming command handler event.hook.OnTelegramCameraStopStreamingCmd: if: type: platypush.message.event.chat.telegram.CommandMessageEvent command: stop_streaming then: - action: camera.pi.stop_streaming - action: chat.telegram.send_message args: chat_id: ${chat_id} text: "PiCamera streaming stopped" Подключите файл конфигурации бота в config.yaml: include: -include/bot.yaml Запустите platypush: # Manual start platypush # Service start systemctl start platypush.service Создайте беседу в вашим ботом перейдя по ссылке, выданной BotFather и начните говорить ему, что делать: Сейчас бот доступен любому мы этого явно не хотим. Представьте, что кто-то включит на полную громкость System Of A Down- Jet Pilot вам ночью. Так себе пробуждение. Можно настроить бэкэнд Telegram так, чтобы он принимал сообщения только из определенного списка идентификаторов чатов (в Telegram chat_id используется как для частных пользователей, так и для групп). Отправьте сообщение боту и откройте журналы platypush или проверьте его стандартные выходные данные. На экране появятся следующие сообщения: 2020-01-03 19:09:32,701| INFO|platypush|Received event: {"type": "event", "target": "turing", "origin": "turing", "id": "***", "args": {"type": "platypush.message.event.chat.telegram.CommandMessageEvent", "chat_id": your_chat_id, "message": {"text": "/help", ...}, "user": {"user_id": your_user_id, "username": "****", "is_bot": false, "link": "https://t.me/you", "language_code": "en", "first_name": "***", "last_name": "***"}, "command": "help", "cmdargs": []}} Скопируйте chat_id своего пользователя и вставьте в бак-энд файл: backend.chat.telegram: authorized_chat_ids: - your_user_id Теперь бот ответит ошибкой, если вы попытаетесь отправить сообщение от неавторизованного пользователя. Вы также можете пригласить своего бота в групповой чат и позволить вашим друзьям или членам семьи регулировать свет в вашем доме, если вы захотите! Что дальше? В этой статье мы изучили только одну специфическую особенность интеграции Telegram - способность бота реагировать на события в команде, запускать действия и отвечать текстовыми сообщениями. Как видно из списка поддерживаемых событий Telegram, можно сделать больше, например: Создавать обработчики, когда кто-то делится контактной информацией - когда-нибудь думали разрешить боту автоматически хранить новые контакты, отправленные вам вашими друзьями в чате? Создавайте обработчики при совместном использовании документов, видео или изображения - например, автоматически загружайте все файлы мультимедиа, отправленные в чат, на жесткий диск или удаленную папку Dropbox. Выполнять действия с текстовыми сообщениями вместо команд - можно использовать TextNewsEvent, например, если вы предпочитаете вводить "включить свет" вместо "/lights_on." Сделайте снимок на камеру наблюдения и отправьте ее себе командой send_photo. Можно также развернуть несколько ботов, например, для каждого устройства, чтобы можно было запускать действия на конкретном устройстве из связанного чата или вместо этого использовать один бот в качестве точки входа и доставлять сообщения другим устройствам через MQTT, Kafka или HTTP API.
img
Девятая часть тут. Ни одна среда передачи данных не может считаться совершенной. Если среда передачи является общей, как радиочастота (RF), существует возможность возникновения помех или даже столкновений дейтаграмм. Это когда несколько отправителей пытаются передать информацию одновременно. Результатом является искаженное сообщение, которое не может быть понято предполагаемым получателем. Даже специализированная среда, такая как подводный оптический кабель типа point-to-point (световолновой), может испытывать ошибки из—за деградации кабеля или точечных событий-даже, казалось бы, безумных событий, таких как солнечные вспышки, вызывающие излучение, которое, в свою очередь, мешает передаче данных по медному кабелю. Существует два ключевых вопроса, на которые сетевой транспорт должен ответить в области ошибок: Как можно обнаружить ошибки при передаче данных? Что должна делать сеть с ошибками при передаче данных? Далее рассматриваются некоторые из возможных ответов на эти вопросы. Обнаружение ошибок Первый шаг в работе с ошибками, независимо от того, вызваны ли они отказом носителя передачи, повреждением памяти в коммутационном устройстве вдоль пути или любой другой причиной, заключается в обнаружении ошибки. Проблема, конечно, в том, что когда получатель изучает данные, которые он получает, нет ничего, с чем можно было бы сравнить эти данные, чтобы обнаружить ошибку. Проверка четности — это самый простой механизм обнаружения. Существуют два взаимодополняющих алгоритма проверки четности. При четной проверке четности к каждому блоку данных добавляется один дополнительный бит. Если сумма битов в блоке данных четная—то есть если в блоке данных имеется четное число битов 1, то дополнительный бит устанавливается равным 0. Это сохраняет четное состояние четности блока. Если сумма битов нечетна, то дополнительный бит устанавливается равным 1, что переводит весь блок в состояние четной четности. Нечетная четность использует ту же самую дополнительную битную стратегию, но она требует, чтобы блок имел нечетную четность (нечетное число 1 бит). В качестве примера вычислите четную и нечетную четность для этих четырех октетов данных: 00110011 00111000 00110101 00110001 Простой подсчет цифр показывает, что в этих данных есть 14 «1» и 18 «0». Чтобы обеспечить обнаружение ошибок с помощью проверки четности, вы добавляете один бит к данным, либо делая общее число «1» в недавно увеличенном наборе битов четным для четной четности, либо нечетным для нечетной четности. Например, если вы хотите добавить четный бит четности в этом случае, дополнительный бит должен быть установлен в «0». Это происходит потому, что число «1» уже является четным числом. Установка дополнительного бита четности на «0» не добавит еще один «1» и, следовательно, не изменит, является ли общее число «1» четным или нечетным. Таким образом, для четной четности конечный набор битов равен: 00110011 00111000 00110101 00110001 0 С другой стороны, если вы хотите добавить один бит нечетной четности к этому набору битов, вам нужно будет сделать дополнительный бит четности «1», так что теперь есть 15 «1», а не 14. Для нечетной четности конечный набор битов равен: 00110011 00111000 00110101 00110001 1 Чтобы проверить, были ли данные повреждены или изменены при передаче, получатель может просто отметить, используется ли четная или нечетная четность, добавить число «1» и отбросить бит четности. Если число «1» не соответствует используемому виду четности (четное или нечетное), данные повреждены; в противном случае данные кажутся такими же, как и первоначально переданные. Этот новый бит, конечно, передается вместе с оригинальными битами. Что произойдет, если сам бит четности каким-то образом поврежден? Это на самом деле нормально - предположим, что даже проверка четности на месте, и передатчик посылает 00110011 00111000 00110101 00110001 0 Приемник, однако, получает 00110011 00111000 00110101 00110001 1 Сам бит четности был изменен с 0 на 1. Приемник будет считать «1», определяя, что их 15. Поскольку даже проверка четности используется, полученные данные будут помечены как имеющие ошибку, даже если это не так. Проверка на четность потенциально слишком чувствительна к сбоям, но в случае обнаружения ошибок лучше ошибиться в начале. Есть одна проблема с проверкой четности: она может обнаружить только один бит в передаваемом сигнале. Например, если даже четность используется, и передатчик отправляет 00110011 00111000 00110101 00110001 0 Приемник, однако, получает 00110010 00111000 00110101 00110000 0 Приемник подсчитает число «1» и обнаружит, что оно равно 12. Поскольку система использует четную четность, приемник будет считать данные правильными и обработает их в обычном режиме. Однако оба бита, выделенные жирным шрифтом, были повреждены. Если изменяется четное число битов в любой комбинации, проверка четности не может обнаружить изменение; только когда изменение включает нечетное число битов, проверка четности может обнаружить изменение данных. Циклическая проверка избыточности (Cyclic Redundancy Check - CRC) может обнаруживать более широкий диапазон изменений в передаваемых данных, используя деление (а не сложение) в циклах по всему набору данных, по одной небольшой части за раз. Работа с примером - лучший способ понять, как рассчитывается CRC. Расчет CRC начинается с полинома, как показано на рисунке 1. На рис. 1 трехчленный многочлен x3 + x2 + 1 расширен, чтобы включить все члены, включая члены, предшествующие 0 (и, следовательно, не влияют на результат вычисления независимо от значения x). Затем эти четыре коэффициента используются в качестве двоичного калькулятора, который будет использоваться для вычисления CRC. Чтобы выполнить CRC, начните с исходного двоичного набора данных и добавьте три дополнительных бита (поскольку исходный полином без коэффициентов имеет три члена; следовательно, это называется трехбитной проверкой CRC), как показано здесь: 10110011 00111001 (оригинальные данные) 10110011 00111001 000 (с добавленными битами CRC) Эти три бита необходимы для обеспечения того, чтобы все биты в исходных данных были включены в CRC; поскольку CRC перемещается слева направо по исходным данным, последние биты в исходных данных будут включены только в том случае, если эти заполняющие биты включены. Теперь начните с четырех битов слева (потому что четыре коэффициента представлены в виде четырех битов). Используйте операцию Exclusive OR (XOR) для сравнения крайних левых битов с битами CRC и сохраните результат, как показано здесь: 10110011 00111001 000 (дополненные данные) 1101 (Контрольные биты CRC) ---- 01100011 00111001 000 (результат XOR) XOR'инг двух двоичных цифр приводит к 0, если эти две цифры совпадают, и 1, если они не совпадают. Контрольные биты, называемые делителем, перемещаются на один бит вправо (некоторые шаги здесь можно пропустить), и операция повторяется до тех пор, пока не будет достигнут конец числа: 10110011 00111001 000 1101 01100011 00111001 000 1101 00001011 00111001 000 1101 00000110 00111001 000 110 1 00000000 10111001 000 1101 00000000 01101001 000 1101 00000000 00000001 000 1 101 00000000 00000000 101 CRC находится в последних трех битах, которые были первоначально добавлены в качестве заполнения; это "остаток" процесса разделения перемещения по исходным данным плюс исходное заполнение. Получателю несложно определить, были ли данные изменены, оставив биты CRC на месте (в данном случае 101) и используя исходный делитель поперек данных, как показано здесь: 10110011 00111001 101 1101 01100011 00111001 101 1101 00001011 00111001 101 1101 00000110 00111001 101 110 1 00000000 10111001 101 1101 00000000 01101001 101 1101 00000000 00000001 101 1 101 00000000 00000000 000 Если данные не были изменены, то результат этой операции всегда должен быть равен 0. Если бит был изменен, результат не будет равен 0, как показано здесь: 10110011 00111000 000 1101 01100011 00111000 000 1101 00001011 00111000 000 1101 00000110 00111000 000 110 1 00000000 10111000 000 1101 00000000 01101000 000 1101 00000000 00000000 000 1 101 00000000 00000001 000 CRC может показаться сложной операцией, но она играет на сильных сторонах компьютера—бинарных операциях конечной длины. Если длина CRC задается такой же, как у стандартного небольшого регистра в обычных процессорах, скажем, восемь бит, вычисление CRC-это довольно простой и быстрый процесс. Проверка CRC имеет то преимущество, что она устойчива к многобитовым изменениям, в отличие от проверки четности, описанной ранее. Исправление ошибок Однако обнаружение ошибки — это только половина проблемы. Как только ошибка обнаружена, что должна делать транспортная система? Есть, по существу, три варианта. Транспортная система может просто выбросить данные. В этом случае транспорт фактически переносит ответственность за ошибки на протоколы более высокого уровня или, возможно, само приложение. Поскольку некоторым приложениям может потребоваться полный набор данных без ошибок (например, система передачи файлов или финансовая транзакция), у них, вероятно, будет какой-то способ обнаружить любые пропущенные данные и повторно передать их. Приложения, которые не заботятся о небольших объемах отсутствующих данных (например, о голосовом потоке), могут просто игнорировать отсутствующие данные, восстанавливая информацию в приемнике, насколько это возможно, с учетом отсутствующей информации. Транспортная система может подать сигнал передатчику, что произошла ошибка, и позволить передатчику решить, что делать с этой информацией (как правило, данные при ошибке будут повторно переданы). Транспортная система может выйти за рамки отбрасывания данных, включив достаточное количество информации в исходную передачу, определить, где находится ошибка, и попытаться исправить ее. Это называется Прямой коррекцией ошибок (Forward Error Correction - FEC). Коды Хэмминга, один из первых разработанных механизмов FEC, также является одним из самых простых для объяснения. Код Хэмминга лучше всего объяснить на примере - для иллюстрации будет использована таблица 1. В Таблице № 1: Каждый бит в 12-битном пространстве, представляющий собой степень двух (1, 2, 4, 6, 8 и т. д.) и первый бит, устанавливается в качестве битов четности. 8-битное число, которое должно быть защищено с помощью FEC, 10110011, распределено по оставшимся битам в 12-битном пространстве. Каждый бит четности устанавливается равным 0, а затем четность вычисляется для каждого бита четности путем добавления числа «1» в позиции, где двоичный бит имеет тот же бит, что и бит четности. В частности: P1 имеет набор крайних правых битов в своем битовом номере; другие биты в числовом пространстве, которые также имеют набор крайних правых битов, включены в расчет четности (см. вторую строку таблицы, чтобы найти все позиции битов в номере с набором крайних правых битов). Они указаны в таблице с X в строке P1. Общее число «1»-нечетное число, 3, поэтому бит P1 устанавливается равным 1 (в этом примере используется четная четность). P2 имеет второй бит из правого набора; другие биты в числовом пространстве, которые имеют второй из правого набора битов, включены в расчет четности, как указано с помощью X в строке P2 таблицы. Общее число «1»-четное число, 4, поэтому бит P2 установлен в 0. P4 имеет третий бит из правого набора, поэтому другие биты, которые имеют третий бит из правого набора, имеют свои номера позиций, как указано с помощью X в строке P3. В отмеченных столбцах есть нечетное число «1», поэтому бит четности P4 установлен на 1. Чтобы определить, изменилась ли какая-либо информация, получатель может проверить биты четности таким же образом, как их вычислял отправитель; общее число 1s в любом наборе должно быть четным числом, включая бит четности. Если один из битов данных был перевернут, приемник никогда не должен найти ни одной ошибки четности, потому что каждая из битовых позиций в данных покрыта несколькими битами четности. Чтобы определить, какой бит данных является неправильным, приемник добавляет позиции битов четности, которые находятся в ошибке; результатом является положение бита, которое было перевернуто. Например, если бит в позиции 9, который является пятым битом данных, перевернут, то биты четности P1 и P8 будут ошибочными. В этом случае 8 + 1 = 9, так что бит в позиции 9 находится в ошибке, и его переворачивание исправит данные. Если один бит четности находится в ошибке—например, P1 или P8—то это тот бит четности, который был перевернут, и сами данные верны. В то время как код Хэмминга гениален, есть много битовых шаблонов-перевертышей, которые он не может обнаружить. Более современный код, такой как Reed-Solomon, может обнаруживать и исправлять более широкий диапазон условий ошибки, добавляя меньше дополнительной информации в поток данных. Существует большое количество различных видов CRC и кодов исправления ошибок, используемых во всем мире связи. Проверки CRC классифицируются по количеству битов, используемых в проверке (количество битов заполнения или, точнее, длины полинома), а в некоторых случаях - по конкретному применению. Например, универсальная последовательная шина использует 5-битный CRC (CRC-5-USB); Глобальная система мобильной связи (GSM), широко используемый стандарт сотовой связи, использует CRC-3-GSM; Мультидоступ с кодовым разделением каналов (CDMA), другой широко используемый стандарт сотовой связи, использует CRC-6-CDMA2000A, CRC-6-CDMA2000B и CRC-30; и некоторые автомобильные сети (CAN), используемые для соединения различных компонентов в автомобиле, используют CRC-17-CAN и CRC-21-CAN. Некоторые из этих различных функций CRC являются не единственной функцией, а скорее классом или семейством функций со многими различными кодами и опциями внутри них.
img
Благодаря Linux, у нас есть очень много инструментов облегчающих администрирование и диагностику сети. В этом плане команда PING является одним из самых полезных инструментов для системных и сетевых администраторов. Сама базовая возможность этой утилиты – определить доступен ли тот или иной хост. Тем не менее в этом материале мы приведем примеры расширенных возможностей этой команды в системе Linux. Про Linux за 5 минут | Что это или как финский студент перевернул мир?
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59