По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье мы посмотрим, что такое статические и динамические библиотеки. Местоположение библиотек по умолчанию. Определение используемых библиотек. Загрузка библиотек. Библиотеки это набор функций, которые могут использоваться в различных программах. Библиотеки могут быть статические (библиотека привязывается к определенной программе или софт содержит данную библиотеку в своем теле.) и динамическими (библиотеки грузятся в оперативную память и используются). Плюсы первого варианта нет проблемы совместимости, т. к. софт уже в себе содержит библиотеку, библиотека всегда с собой. Но при этом программы становятся большие по размеры и т.к каждая может загружать свои библиотеки, а иногда и одинаковые.  Второй вариант значительно лучше, сами программы по своему размеру меньше. Библиотека загружается один раз в оперативку. И следующая программа, которой необходимы такие же функции, берет и использует эти данные. По умолчанию библиотеки в Linux находятся в двух папках. Это корневая папка /lib в ней находятся библиотеки, которые используют программы, расположенные в корневой папке /bin. И есть вторая папка /usr/lib. В ней находятся библиотеки, которые используют программы расположенные /usr/bin.  Пути к библиотекам указаны файле /etc/ld.so.conf. Данный файл можно просмотреть стандартным способом, через утилиту cat. Видим, что написано включить все библиотеки, которые расположены по пути, указанном в файле. Те которые оканчиваются на .conf. Он просто включает в себя все настройки, которые находятся в конфигурационных файлах, в данной директории. Переходим в данную директорию. В данной директории мы можем видеть 2 файла конфигурации, в зависимости от версии и наполнения операционной системы их может быть и больше. Ну и соответственно в конфигурационных файлах находятся пути к директориям, где лежат необходимые для работы библиотеки. Если мы ставим какое, то свое программное обеспечение, которому необходимы дополнительные библиотеки, не идущие в составе дистрибутива linux, то в данной директории может создаться свой конфигурационный файл. Например: если мы используем систему виртуализации VMware, то к каждой VM устанавливаем VMware tools то данное программное обеспечение создаст свой конфигурационный файл с путями для своих библиотек. Переходим в директорию cd /etc/ и отсортируем так, чтобы в результатах все, что содержит ld. ls | grep ld. Получим следующее: Видим 3 основных конфигурационных файла. ld.so.conf - это файл конфигурации в котором написано откуда брать дополнительные библиотеки. Директория ls.so.conf.d в которой находятся дополнительные конфигурационные файлы и ld.so.cache это кэш библиотек. Он у нас выстраивается каждый раз для того, чтобы программы при необходимости при запросе библиотек не копались в файлах, а сразу брали из загруженного в оперативную память кэша. Т.е. если мы вносим какие-то изменения в файл конфигурации, добавляем какие-то конфигурационные файлы нам необходимо обновить этот кэш. Кэш обновляется командой ldconfig. Этого, собственно, достаточно, чтобы прогрузить все библиотеки в кэш. Давайте посмотрим, как, определить какими библиотеками пользуется какая программа. Для этого мы будем использовать команду ldd и путь к бинарному файлу. Например: Программа ls которая используется для вывода списка файлов в каталоге. Она находится в каталоге /bin/ls. В результате получим мы следующее: Мы видим, какие so использует данная программа и соответственно ссылки на них, где они расположены, собственно, so - это наши библиотеки в данном случае. Возможно добавление библиотек вручную, это может потребоваться если мы ставим совершенно стороннее программное обеспечение, которое очень трудно взаимодействует с Linux или устаревшее. Т.е. которое само не может создать конфигурационный файл и разнести библиотеки в системные директории Linux. Если мы хотим сделать это вручную, тогда нам необходим тот самый файл /etc/ld.so.conf. В данный файл мы можем дописать путь к файлу конфигурации библиотек тех, которые нам нужны. Либо есть более легкий вариант с использованием переменной export LD_LIBRARY_PATH и указать путь к тем особенным библиотекам, которые будет использовать наша "особенная" программа. Обычно все стороннее программное обеспечение устанавливается в папку /opt. Итоговый вариант будет выглядеть как: export LD_LIBRARY_PATH=/opt/soft/lib и когда пройдет экспорт, у нас попробует погрузится из этого пути библиотека, но перед этим необходимо не забыть сделать ldconfig.
img
В этой статье мы рассмотрим механизмы масштабируемости BGP и связанные с ними концепции. Предыдущие статьи цикла про BGP: Основы протокола BGP Построение маршрута протоколом BGP Формирование соседства в BGP Оповещения NLRI и политики маршрутизации BGP Видео: Основы BGP за 7 минут Механизмы масштабируемости BGP Истощение доступных автономных системных номеров явилось проблемой точно так же, как было проблемой для интернета истощение IP-адресов. Чтобы решить эту проблему, инженеры обратились к знакомому решению. Они обозначили диапазон номеров AS только для частного использования. Это позволяет вам экспериментировать с AS конструкцией и политикой, например, в лаборатории и использовать числа, которые гарантированно не конфликтуют с интернет-системами. Помните, что число AS-это 16-разрядное число, допускающее до 65 536 чисел AS. Диапазон для частного использования: 64512-65535. Еще одним решением проблемы дефицита, стало расширение адресного пространства имен. Было утверждено пространство, представляющее собой 32-разрядное число. В течение длительного времени, с точки зрения масштабируемости, одноранговые группы Border Gateway Protocol считались абсолютной необходимостью. Мы настраивали одноранговые группы для уменьшения конфигурационных файлов. Так же мы настраивали одноранговые группы для повышения производительности. Преимущества производительности были нивелированы с помощью значительно улучшенных механизмов, сейчас. Несмотря на это, многие организации все еще используют одноранговые группы, поскольку они поняты и легки в настройке. Появились в BGP одноранговые группы для решения нелепой проблемы избыточности в BGP конфигурации. Рассмотрим простой (и очень маленький) пример 1. Даже этот простой пример отображает большое количество избыточной конфигурации. Пример 1: типичная конфигурация BGP без одноранговых групп ATL1(config)#router bgp 200 ATL1( config-router)#neiqhbor 10.30.30.5 remote-as 200 ATL1( config-router)#neiqhbor 10.30.30.5 update- source lo0 ATL1( config= router)#neiqhbor 10.30 .30.5 password S34Dfr112s1WP ATL1(config-router)#neiqhbor 10.40.40.4 remote-as 200 ATL1( config-router)#neiqhbor 10.40.40 .4 update- source lo0 ATL1(config-router)#neiqhbor 10.40.40.4 password S34Dfr112s1WP Очевидно, что все команды настройки относятся к конкретному соседу. И многие из ваших соседей будут иметь те же самые характеристики. Имеет смысл сгруппировать их настройки в одноранговую группу. Пример 2 показывает, как можно настроить и использовать одноранговую группу BGP. Пример 2: одноранговые группы BGP ATL2 (config)#router bgp 200 ATL2 (config-router)#neighbor MYPEERGR1 peer-group ATL2 (config-router)#neighbor MYPEERGR1 remote-as 200 ATL2 (config-router)#neighbor MYPEERG1l update-source lo0 ATL2(config-router)#neighbor MYPEERGRl next-hop-self ATL2 (config-router)#neighbor 10.40.40 .4 peer-group MYPEERGR1 ATL2 (config-router)#neighbor 10.50.50 .5 peer-group MYPEERGR1 Имейте в виду, что, если у вас есть определенные настройки для конкретного соседа, вы все равно можете ввести их в конфигурацию, и они будут применяться в дополнение к настройкам одноранговой группы. Почему же так часто использовались одноранговые группы? Они улучшали производительность. Собственно говоря, это и было первоначальной причиной их создания. Более современный (и более эффективный) подход заключается в использовании шаблонов сеансов для сокращения конфигураций. А с точки зрения повышения производительности теперь у нас есть (начиная с iOS 12 и более поздних версий) динамические группы обновлений. Они обеспечивают повышение производительности без необходимости настраивать что-либо в отношении одноранговых групп или шаблонов. Когда вы изучаете одноранговую группу, вы понимаете, что все это похоже на шаблон для настроек. И это позволит вам использовать параметры сеанса, а также параметры политики. Что ж, новая и усовершенствованная методология разделяет эти функциональные возможности на шаблоны сессий и шаблоны политики. Благодаря шаблонам сеансов и шаблонам политик мы настраиваем параметры, необходимые для правильной установки сеанса, и помещаем эти параметры в шаблон сеанса. Те параметры, которые связаны с действиями политик, мы помещаем в шаблон политики. Одна из замечательных вещей в использовании этих шаблонов сеансов или политик, а также того и другого, заключается в том, что они следуют модели наследования. У вас может быть шаблон сеанса, который выполняет определенные действия с сеансом. Затем вы можете настроить прямое наследование так, чтобы при создании другого наследования оно включало в себя вещи, созданные ранее. Эта модель наследования дает нам большую гибкость, и мы можем создать действительно хорошие масштабируемые проекты для реализаций BGP. Вы можете использовать шаблоны или одноранговые группы, но это будет взаимоисключающий выбор. Так что определитесь со своим подходом заранее. Вы должны заранее определиться, что использовать: использовать ли устаревший подход одноранговых групп или же использовать подход шаблонов сеанса и политики. После выбора подхода придерживайтесь его, так как, использовать оба подхода одновременно нельзя. Теперь можно предположить, что конфигурация для шаблонов сеансов будет довольно простой, и это так. Помните, прежде всего, все что мы делаем здесь и сейчас, относится к конкретной сессии. Поэтому, если мы хотим установить timers, нам нужно установить remote-as – и это будет считается параметром сеанса. Например, мы делаем update source. Мы настраиваем eBGP multihop. Все это имеет отношение к текущему сеансу, и именно это мы будем прописывать в шаблоне сеанса. Обратите внимание, что мы начинаем с создания шаблона. Поэтому используем команду template peer-session, а затем зададим ему имя. И тогда в режиме конфигурации шаблона можем настроить наследование, которое позволит наследовать настройки от другого однорангового сеанса. Можем установить наш remote-as как и/или update source. После завершения, мы используем команду exit-peer-session, чтобы выйти из режима конфигурации для этого сеанса. Пример 3 показывает конфигурацию шаблона сеанса. Пример 3: Шаблоны сеансов BGP ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL2 (config)#router bgp 200 ATL2 (config-router)#template peer- session MYNAME ATL2 (config-router-stmp)#inherit peer- session MYOTHERNAME ATL2 (config- router-stmp )#remote-as 200 ATL2(config-router-stmp )#password MySecrectPass123 ATL2 (config-router-stmp )#exit-peer-session ATL2 (config-router)#neiqhbor 10.30.30 .10 inherit peer-session MYNAME ATL2 (config-router)#end ATL2# Это простой пример настройки соседства с помощью оператора neighbor и использования наследования однорангового сеанса. Затем присваивается имя однорангового сеанса, созданного нами для нашего шаблона сеанса. Это соседство наследует параметры сеанса. Помните, что, если вы хотите сделать дополнительную настройку соседства, можно просто присвоить соседу IP-адрес, а затем выполнить любые настройки вне шаблона однорангового сеанса, которые вы хотите дать этому соседу. Таким образом, у вас есть та же гибкость, которую мы видели с одноранговыми группами, где вы можете настроить индивидуальные параметры для этого конкретного соседа вне шаблонного подхода этого соседства. Вы можете подумать, что шаблоны политик будут иметь сходную конструкцию и использование с шаблонами сеансов, и вы будете правы. Помните, что если ваши шаблоны сеансов находятся там, где мы собираемся настроить параметры, которые будут относиться к сеансу BGP, то, конечно, шаблоны политик будут храниться там, где мы храним параметры, которые будут применяться к политике. Пример 4 показывает настройку и использование шаблона политики BGP. Пример 4: Шаблоны политики BGP ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL2 (config)#router bgp 200 ATL2(config-router)#template peer-policy MYPOLICYNAME ATL2 (config-router-ptmp )#next-hop-self ATL2 (config-router-ptmp )#route-map MYMAP out ATL2 (config-router-ptmp )#allowas-in ATL2 (config-router-ptmp )#exit-peer-policy ATL2 (config-router)#neighbor 10.40.40.10 remote-as 200 ATL2 (config-router)#neighbor 10.40.40.10 inherit peer-policy MYNAME ATL2 (config-router)#end ATL2# Да, все эти параметры, которые мы обсуждали при изучении манипуляций с политикой, будут тем, что мы будем делать внутри шаблона политики. Однако одним из ключевых отличий между нашим шаблоном политики и шаблоном сеанса является тот факт, что наследование здесь будет еще более гибким. Например, мы можем перейти к семи различным шаблонам, от которых мы можем непосредственно наследовать политику. Это дает нам еще более мощные возможности наследования с помощью шаблонов политик по сравнению с шаблонами сеансов. Опять же, если мы хотим сделать независимые индивидуальные настройки политики для конкретного соседа, мы можем сделать это, добавив соответствующие команды соседства. Благодаря предотвращению циклов и правилу разделения горизонта (split-horizon rule) IBGP, среди прочих факторов, нам нужно придумать определенные решения масштабируемости для пирингов IBGP. Одним из таких решений является router reflector. Рис. 1: Пример топологии router reflector Конфигурация router reflector удивительно проста, поскольку все это обрабатывается на самом router reflector (R3). Клиенты route reflector – это R4, R5 и R6. Они совершенно не знают о конфигурации и настроены для пиринга IBGP с R3 как обычно. Пример 5 показывает пример конфигурации router reflector. Обратите внимание, что это происходит через простую спецификацию клиента router reflector. Пример 5: BGP ROUTE REFLECTOR R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3 (config)#router bgp 200 R3 (config-router)#neighbor 10.50.50.10 remote -as 200 R3 (config-router)#neighbor 10.50.50.10 route-reflector-client R3 (config-router)#end R3# Route reflector автоматически создает значение идентификатора (ID) кластера для кластера, и это устройство и эти клиенты будут частью того, что мы называем кластером route reflector. Cisco рекомендует разрешить автоматическое назначение идентификатора кластера для идентификации клиента. Это 32-разрядный идентификатор, который BGP извлекает из route reflector. Магия Route reflector заключается в том, как меняются правила IBGP. Например, если обновление поступает от клиента Route reflector (скажем, R4), то устройство R3 «отражает» это обновление своим другим клиентам (R5 и R6), а также своим неклиентам (R1 и R2). Это обновление происходит даже при том, что конфигурация для IBGP значительно короче полной сетки пирингов, которая обычно требуется. А теперь что будет, если обновление поступит от не клиента Route reflector (R1)? Route reflector отправит это обновление всем своим клиентам Route reflector (R4, R5 и R6). Но тогда R3 будет следовать правилам IBGP, и в этом случае он не будет отправлять обновление через IBGP другому не клиенту Route reflector (R2). Чтобы решить эту проблему, необходимо будет создать пиринг от R1 к устройству R2 с помощью IBGP. Или, можно добавить R2 в качестве клиента Route reflector R3. Есть еще один способ, которым мы могли бы решить проблему с масштабируемостью IBGP- это манипулирование поведением EBGP. Мы делаем это с конфедерациями. Вы просто не замечаете, что конфедерации используются так же часто, как Route reflector. И причина состоит в том, что они усложняют нашу топологию, и делают поиск неисправностей более сложным. На рис. 2 показан пример топологии конфедерации. Рисунок 2: Пример топологии конфедерации Мы имеем наш AS 100. Для создания конфедерации необходимо создать небольшие субавтономные системы внутри нашей основной автономной системы. Мы их пронумеруем с помощью, номеров автономных систем только для частного использования. Что мы имеем, когда манипулируем поведением eBGP, что бы имеет конфедерацию EBGP пирингов? Это позволяет нам установить пиринги между соответствующими устройствами, которые хотим использовать в этих автономных системах. Как вы можете догадаться, они не будут следовать тем же правилам, что и наши стандартные пиринги EBGP. Еще один важный момент заключается в том, что все это для внешнего неконфедеративного мира выглядит просто как единый AS 100. Внутри мы видим реальные AS, и конфедеративные отношения EBGP между ними. Помимо устранения проблемы разделения горизонта IBGP, что же меняется с пирингами конфедерации EBGP? В следующем прыжке поведение должно измениться. Следующий прыжок не меняется тогда, когда мы переходим от одной из этих небольших конфедераций внутри нашей АС к другой конфедерации. Вновь добавленные атрибуты обеспечивают защиту от цикла из-за конфедерации. Атрибут AS_confed_sequence и AS_confed_set используются в качестве механизмов предотвращения циклов. Пример 6 показывает пример частичной настройки конфедерации BGP. R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3 (config)#router bgp 65501 R3(config-router)#bgp confederation identifier 100 R3 (config-router)#bgp confederation peers 65502 R3 (config-router)#neighbor 10 .20.20.1 remote-as 65502 R3 (config-router)#end R3# Иногда возникает необходимость применения общих политик к большой группе префиксов. Это делается легко, если вы помечаете префиксы специальным значением атрибута, называемым сообществом (community). Обратите внимание, что сами по себе атрибуты сообщества ничего не делают с префиксами, кроме как прикрепляют значение идентификатора. Это 32-разрядные значения (по умолчанию), которые мы можем именовать, чтобы использовать дополнительное значение. Вы можете настроить значения сообщества таким образом, чтобы они были значимы только для вас или значимы для набора AS. Вы также можете иметь префикс, который содержит несколько значений атрибутов сообщества. Кроме того, можно легко добавлять, изменять или удалять значения сообщества по мере необходимости в вашей топологии BGP. Атрибуты сообщества могут быть представлены в нескольких форматах. Более старый формат выглядит следующим образом: Decimal - 0 to 4294967200 (в десятичном) Hexadecimal – 0x0 to 0xffffffa0 (в шестнадцатеричном) Более новый формат: AA:NN AA - это 16-битное число, которое представляет ваш номер AS, а затем идет 16-битное число, используемое для задания значимости своей политике AS. Таким образом, вы можете задать для AS 100 100:101, где 101- это номер внутренней политики, которую вы хотите применить к префиксам. Есть также хорошо известные общественные значения. Это: No-export - префиксы не объявляются за пределами AS. Вы можете установить это значение, когда отправляете префикс в соседний AS. чтобы заставить его (соседний AS) не объявлять префикс за собственные границы. Local-AS - префиксы с этим атрибутом сообщества никогда не объявляются за пределами локального AS No-advertise - префиксы с этим атрибутом сообщества не объявляются ни на одном устройстве Эти хорошо известные атрибуты сообщества просто идентифицируются по их зарезервированным именам. Есть также расширенные сообщества, которые также можно использовать. Они предлагают 64-битную версию для идентификации сообществ! Задание параметров осуществляется настройкой TYPE:VALUE. Выглядит оно следующим образом: 65535:4294967295 Как вы можете догадаться, мы устанавливаем значения сообщества, используя route maps. Пример 7 показывает пример настроек. Обратите внимание, что в этом примере также используется список префиксов. Они часто используются в BGP для гибкой идентификации многих префиксов. Они гораздо более гибки, чем списки доступа для этой цели. Пример 7: Установка значений сообщества в BGP R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3(config)#ip prefix-list MYLIST permit 172.16.0.0/16 le 32 R3(config)#route-map SETCOMM permit 10 R3(config-route-map)#match ip address prefix-list MYLIST R3(config-route-map)#set community no-export R3(config-route-map)#route-map SETCOMM permit 20 R3(config)#router bgp 100 R3(config-router)#neighbor 10.20.20.1 route-map SETCOMM out R3 (config-router)#neighbor 10.20.20.1 send-community R3(config-router)#end R3#
img
Типичный эксплойт может начать с получения злоумышленником доступа к учетной записи с меньшими привилегиями. После входа в систему злоумышленники будут изучать систему для выявления других уязвимостей, которые они могут использовать в дальнейшем. Затем они используют привилегии для олицетворения фактических пользователей, получения доступа к целевым ресурсам и выполнения различных необнаруженных задач. Атаки типа эскалации привилегий бывают вертикальными и горизонтальными. В вертикальном типе злоумышленник получает доступ к учетной записи, а затем выполняет задачи в качестве этого пользователя. Для горизонтального типа злоумышленник сначала получит доступ к одной или нескольким учетным записям с ограниченными привилегиями, а затем скомпрометирует систему, чтобы получить больше прав на выполнение административных ролей. Такие права позволяют злоумышленникам выполнять административные задачи, развертывать вредоносные программы или выполнять другие нежелательные действия. Например, они могут нарушить работу, изменить параметры безопасности, украсть данные или скомпрометировать системы таким образом, чтобы оставить открытые бэкдоры для использования в будущем. Как правило, подобно кибератакам, эскалация привилегий использует систему и обрабатывает уязвимости в сетях, службах и приложениях. Таким образом, их можно предотвратить, сочетая передовые методов и инструменты обеспечения безопасности. В идеале организация должна развертывать решения, которые могут сканировать, обнаруживать и предотвращать широкий спектр потенциальных и существующих уязвимостей и угроз безопасности. Рекомендации по предотвращению атак эскалации привилегий Организации должны защищать все критически важные системы и данные, а также другие области, которые могут выглядеть непривлекательными для злоумышленников. Все, что требуется злоумышленнику – это проникнуть в систему. Находясь внутри, они могут искать уязвимости, которые используют в дальнейшем, чтобы получить дополнительные привилегии. Помимо защиты активов от внешних угроз, важно принять достаточные меры для предотвращения и внутренних атак. Хотя применяемые методы могут отличаться в зависимости от систем, сетей, среды и других факторов, ниже приведены некоторые методы, которые организации могут использовать для защиты своей инфраструктуры. Защита и сканирование сети, систем и приложений В дополнение к развертыванию решения по обеспечению безопасности в режиме реального времени необходимо регулярно проверять все компоненты ИТ-инфраструктуры на наличие уязвимостей, которые могут привести к новым угрозам проникновения. Для этого можно использовать эффективный сканер уязвимостей для поиска незащищенных операционных систем и приложений, неправильных настроек, слабых паролей и других недостатков, которые могут быть использованы злоумышленниками. Хотя можно использовать различные сканеры уязвимостей для выявления слабых мест в устаревшем программном обеспечении, обычно трудно или нецелесообразно обновлять, или исправлять все системы. В частности, это является проблемой при работе с устаревшими компонентами или крупномасштабными производственными системами. В таких случаях можно развернуть дополнительные уровни безопасности, такие как брандмауэры веб-приложений (WAF), которые обнаруживают и останавливают вредоносный трафик на сетевом уровне. Как правило, WAF обеспечивает защиту базовой системы даже в том случае, если на нем не установлены необходимые патчи или устарела. Правильное управление учетными записями с привилегиями Важно управлять привилегированными учетными записями и гарантировать, что все они безопасны, используются в соответствии с передовыми практиками и не раскрываются. Группы безопасности должны иметь список всех привилегированных учетных записей, их расположение и для чего они используются. Другие меры включают: Минимизация количества и объема привилегированных учетных записей, мониторинг и ведение журнала их деятельности; Анализ каждого привилегированного пользователя или учетной записи для выявления и устранения любых рисков, потенциальных угроз, источников и намерений злоумышленников; Основные виды атак и меры по предотвращению; Соблюдайте принцип наименьших привилегий; Запретить администраторам предоставлять общий доступ к учетным записям и учетным данным. Мониторинг поведения пользователей Анализ поведения пользователя позволяет определить наличие скомпрометированных учетных записей. Обычно злоумышленники нацеливаются на пользователей, которые обеспечивают доступ к системам организации. Если им удастся получить учетные данные, они войдут в сеть и могут остаться незамеченными в течение некоторого времени. Поскольку трудно вручную контролировать поведение каждого пользователя, оптимальным подходом является развертывание решения UEBA (User and Entity Behavior Analytics). Такой инструмент непрерывно отслеживает активность пользователя за определённое время. Затем создает нормальный базовый уровень поведения, который используется для обнаружения необычных действий. Это один из показателей скомпрометированных учетных записей. Результирующий профиль содержит такую информацию, как местоположение, ресурсы, файлы данных и услуги, к которым обращается пользователь, и их частота, конкретные внутренние и внешние сети, количество хостов, а также выполняемые процессы. С помощью этой информации инструмент может идентифицировать подозрительные действия или параметры, которые отклоняются от базовой линии. Создание и применение политики надёжных паролей Создайте и применяйте надежные политики, чтобы пользователи имели уникальные и трудноугадываемые пароли. Кроме того, многофакторная аутентификация добавляет дополнительный уровень безопасности при преодолении уязвимостей, которые могут возникнуть, когда трудно вручную применить надежные политики паролей. Группы безопасности также должны развернуть необходимые средства, которые могут сканировать системы, выявлять и отмечать слабые пароли или предлагать действия. Это аудиторы паролей, средства защиты политик и другие. Средства принудительного применения гарантируют наличие у пользователей надежных паролей с точки зрения длины, сложности и политик компании. Организации также могут использовать корпоративные средства управления паролями, помогающие пользователям создавать и использовать сложные и безопасные пароли, соответствующие политикам служб, требующих проверки подлинности. Дополнительные меры, такие как многофакторная аутентификация для разблокировки диспетчера паролей, повышают его безопасность, что делает практически невозможным доступ злоумышленников к сохраненным учетным данным. Типичные корпоративные менеджеры паролей включают Keeper, Dashlane, 1Password. Обезопасить пользовательские вводы и защитить базы данных Злоумышленники могут использовать уязвимые поля пользовательского ввода, а также базы данных для ввода вредоносного кода, получения доступа и компрометации систем. По этой причине группы безопасности должны использовать такие передовые методы, как строгая аутентификация и эффективные инструменты для защиты баз данных и всех типов полей ввода данных. В дополнение к своевременному установлению патчей баз данных и защите всех пользовательских входных данных, хорошей практикой считается шифрование всех передаваемых и хранящихся данных. Не лишним будет назначение файлам атрибута только для чтения, а доступ для записи предоставлять группам и пользователям по запросу. Обучение пользователей Пользователи являются самым слабым звеном в цепочке обеспечения безопасности организации. Поэтому важно расширить их возможности и обучить тому, как безопасно выполнять свои задачи. В противном случае один щелчок пользователя может привести к компрометации всей сети или системы. Некоторые из рисков включают открытие вредоносных ссылок или вложений, посещение веб-сайтов с нарушением безопасности, использование слабых паролей и многое другое. В идеале организация должна иметь регулярные программы повышения уровня безопасности. Кроме того, они должны иметь методологию проверки эффективности обучения. Средства предотвращения атак эскалации привилегий Предотвращение атак эскалации привилегий требует сочетания инструментов. Они включают, но не ограничиваются приведенными ниже решениями. Решение для анализа поведения пользователей и объектов (UEBA) 1. Exabeam Платформа Exabeam Security Management - это быстрое и простое в развертывании решение для анализа поведения на основе ИИ, которое помогает отслеживать действия пользователей и учетных записей в различных службах. С помощью Exabeam можно также получать журналы из других ИТ-систем и средств безопасности, анализировать их, выявлять и отмечать опасные действия, угрозы и другие проблемы. Функции: Ведение журнала и предоставление полезной информации для расследования инцидентов. К ним относятся все сеансы, когда конкретная учетная запись или пользователь впервые получили доступ к службе, серверу, приложению или ресурсу, учетная запись входит в систему с нового VPN-соединения, из другой страны и т.д; Масштабируемое решение применимо для развертывания в одном экземпляре, облаке и локально; Создает всеобъемлющую временную шкалу, которая четко показывает полный путь злоумышленника на основе нормальной и ненормальной учетной записи или поведения пользователя. 2. Cynet 360 Платформа Cynet 360 - это комплексное решение, обеспечивающее поведенческую аналитику, защиту сети и конечных точек. Она позволяет создавать профили пользователей, включая их геолокации, роли, часы работы, шаблоны доступа к локальным и облачным ресурсам и т.д. Платформа помогает выявлять необычные виды деятельности, такие как; Вход в систему или ресурсы в первый раз Вход с нового места или использование нового VPN-подключения Несколько параллельных подключений к нескольким ресурсам в течение очень короткого времени Учетные записи, получающие доступ к ресурсам в нерабочее время Средства защиты паролей 3. Password Auditor Средства аудита паролей сканируют имена хостов и IP-адреса, чтобы автоматически идентифицировать слабые учетные данные для таких сетевых служб и веб-приложений, как веб-формы HTTP, MYSQL, FTP, SSH, RDP, сетевые маршрутизаторы и другие, требующие аутентификации сервисы. Затем он пытается войти в систему с использованием слабых, а также часто используемых комбинаций имен пользователей и паролей для идентификации и оповещения об учетных записях со слабыми учетными данными. 4. Password Manager Pro Менеджер паролей ManageEngine pro предоставляет комплексное решение по управлению, контролю, мониторингу и аудиту привилегированной учетной записи на протяжении всего ее жизненного цикла. Он может управлять привилегированной учетной записью, SSL-сертификатом, удаленным доступом, а также привилегированным сеансом. Функции: Автоматизация и обеспечение частого сброса паролей для критически важных систем, таких как серверы, сетевые компоненты, базы данных и другие ресурсы Хранение и организация всех привилегированных и конфиденциальных учетных записей и паролей в централизованном и безопасном хранилище. Позволяет организациям выполнять критические аудиты безопасности, а также соответствовать нормативным требованиям, таким как HIPAA, PCI, SOX и т.д. Позволяет участникам группы безопасно обмениваться административными паролями. Сканер уязвимостей 5. Netsparker Netsparker - это масштабируемое автоматизированное решение для поиска уязвимостей и управления, которое может масштабироваться в соответствии с требованиями любой организации. Это средство может сканировать сложные сети и среды, обеспечивая прозрачную интеграцию с другими системами, включая решения CI/CD, SDLC и другие. Она обладает расширенными возможностями и оптимизирована для сканирования и выявления уязвимостей в сложных средах и приложениях. Кроме того, Netsparker можно использовать для проверки веб-серверов на наличие неправильных настроек безопасности, которые могут использоваться злоумышленниками. Как правило, средство обнаруживает возможность SQL-инъекций, удаленное включение файлов, межсайтовый скриптинг (XSS) и другие уязвимости из Top-10 OWASP в веб-приложениях, веб-службах, веб-страницах, API и т.д. 6. Acunetix Acunetix - это комплексное решение со встроенными средствами поиска уязвимостей, управления и простой интеграции с другими средствами безопасности. Это помогает автоматизировать такие задачи управления уязвимостями, как сканирование и исправление, что позволяет экономить ресурсы. Функции: Интегрируется с другими инструментами, вроде Jenkins, GitHub, Jira, Mantis и многое другое; Локальные и облачные варианты развертывания; Возможность настройки в соответствии со средой и требованиями заказчика, а также межплатформенная поддержка; Быстрое выявление и реагирование на широкий спектр проблем безопасности, включая распространенные веб-атаки, межсайтовые скриптинг (XSS), SQL- инъекции, вредоносные программы, неправильные настройки, незащищенные ресурсы и т.д. Решения PAM (Privileged Access Management) 7. JumpCloud Jumpcloud - это решение Directory as a Service (DaaS), которое обеспечивает безопасную аутентификацию и подключение пользователей к сетям, системам, службам, приложениям и файлам. Как правило, масштабируемый облачный каталог представляет собой службу, которая управляет, аутентифицирует и авторизирует пользователей, приложения и устройства. Функции: Создает безопасный и централизованный авторитетный каталог; Поддержка межплатформенного управления доступом пользователей; Предоставляет функции единого входа, поддерживающие управление доступом пользователей к приложениям через LDAP, SCIM и SAML 2.0; Обеспечивает безопасный доступ к локальным и облачным серверам; Поддержка многофакторной аутентификации; Автоматизированное администрирование безопасности и связанных с ней функций, вроде ведения журнала событий, создания сценариев, управления API, PowerShell и многое другое 8. Ping Identity Ping Identity - это интеллектуальная платформа, обеспечивающая многофакторную аутентификацию, единый вход, службы каталогов и многое другое. Это позволяет организациям повысить безопасность и эффективность идентификации пользователей. Особенности: Единый вход, обеспечивающий безопасную и надежную аутентификацию и доступ к услугам; Многофакторная аутентификация, добавляющая дополнительные уровни безопасности; Улучшенное управление данными и способность соблюдать правила конфиденциальности; Службы каталогов, обеспечивающие безопасное управление идентификационными данными пользователей и данными; Гибкие возможности развертывания облачных сред, такие как Identity-as-a-Service (IDaaS), контейнерное программное обеспечение и т.д. 9. Foxpass Foxpass - это масштабируемое решение для управления идентификацией и доступом корпоративного уровня для локальных и облачных развертываний. Она предоставляет функции управления ключами RADIUS, LDAP и SSH, которые обеспечивают доступ каждого пользователя только к определенным сетям, серверам, VPN и другим услугам в разрешенное время. Средство легко интегрируется с другими службами, такими как Office 365, Google Apps и т.д. 10. AWS Secrets Manager AWS Secrets Manager предоставляет надежные и эффективные средства защиты паролей и других данных, необходимых для доступа к службе, приложениям и другим ресурсам. Она позволяет легко управлять ключами API, учетными данными базы данных и т.д. Заключение Подобно кибератакам, эскалация привилегий использует уязвимости в системе, сетях, службах и приложениях. Таким образом, их можно предотвратить, развернув правильные средства и методы обеспечения безопасности. Эффективные меры включают обеспечение наименьших привилегий, надежных паролей и политик проверки подлинности, защиту конфиденциальных данных, уменьшение поверхности атаки, защиту учетных данных пользователей и многое другое. Не будет лишним своевременное обновление и исправление всех систем, программного обеспечения и встроенного ПО, мониторинг поведения пользователей и обучение пользователей методам безопасной работы с вычислительными системами.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59