По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Доскональное понимание принципов работы межсетевых экранов (брандмауэров) и относящихся к ним технологий крайне необходимо для любого человека, который желает развиваться в сфере информационной безопасности. Так же это помогает настраивать и управлять системой информационной безопасности правильно и с минимальным количеством ошибок. Слово «межсетевой экран» как правило обозначает систему или устройство, которое находится на границе между внутренней(доверенной) сетью и внешней. Несколько различных межсетевых экранов предлагают пользователям и приложениям особые политики управления безопасностью для различных угроз. Так же они часто обладают способностью записи событий, для предоставления системному администратору возможности идентифицировать, изучить, проверить и избавиться от угрозы. Кроме того, несколько программных продуктов могут запускаться на рабочей станции только для защиты конкретной машины. Сетевые брандмауэры обладают несколькими ключевыми особенностями, для того что бы обеспечивать защиту сети по ее периметру. Основной задачей сетевого брандмауэры является запрет или разрешение на пропуск траффика, который попадает в сеть, основываясь на предварительно настроенных политиках. Ниже перечислены процессы, позволяющие предоставлять или блокировать доступ траффику: Однокритериальные (простые) методики фильтрации пакетов Многокритериальные методики фильтрации пакетов Прокси-серверы Проверка состояния пакетов Трансляция сетевого адреса Методы фильтрации пакетов Основная цель пакетных фильтров – просто контроль доступа к отдельным сегментам сети путем определения разрешенного трафика. Фильтры, как правило, исследуют входящий трафик на 2 уровне модели OSI (транспортном). К примеру, пакетные фильтры способны анализировать пакеты TCP и UDP и оценивать их по ряду критериев, которые называются листами контроля доступа. Они проверяют следующие элементы внутри пакета: Исходящий сетевой адрес Адрес назначения Исходящий порт Порт назначения Протокол Различные брандмауэры основанные на технике пакетной фильтрации так же могут проверять заголовки пакетов для определения источника пакета – т.е из какой сессии он появился: новой или уже существующий. Простые методики фильтрации пакетов, к сожалению, имеют определенные недостатки: Листы контроля доступа могут быть крайне велики и трудны для управления Их можно обойти путем подмены пакетов, злоумышленник может послать пакет, в заголовке которого будет разрешенный листом контроля доступа сетевой адрес. Очень многие приложения могут постоянно строить множественные соединения со случайно используемыми портами. Из-за этого становится действительно тяжело определить какие порты будут использованы после установления соединения. К примеру, таким приложением являются различные мультимедиа программы – RealAudio, QuickTime и прочие. Пакетные фильтры не воспринимают протоколы выше транспортного и их специфику, связанную с каждым конкретным приложением и предоставление такого доступа с использованием листов контроля доступа, является очень трудоёмкой задачей. Прокси-серверы Прокси-серверы — это устройства, которые являются промежуточными агентами, которые действуют от имени клиентов, которые находятся в защищенной или частной сети. Клиенты на защищенной стороне посылают запросы на установление соединения к прокси-серверу для передачи информации в незащищенную сеть или в Интернет. Соответственно, прокси-сервер или приложение совершает запрос от имени внутреннего пользователя. Большинство прокси брандмауэров работает на самом верхнем, седьмом уровне модели OSI (прикладном) и могут сохранять информацию в кэш-память для увеличения их производительности. Прокси-технологии могут защитить сеть от специфических веб-атак, но в общем и целом они не являются панацеей, и, кроме того, они плохо масштабируются. Трансляция сетевого адреса Некоторые устройства, работающие на третьем уровне(сетевом) могут совершать трансляцию сетевых адресов, или NAT (Network Address Translation). Устройство третьего уровня транслирует внутренний сетевой адрес хоста в публичный, который может маршрутизироваться в сети Интернет. В следствие малого числа сетевых адресов в протоколе IP, данная технология используется повсеместно. Брандмауэры с проверкой состояния пакетов Такие межсетевые экраны имеют дополнительные преимущества по сравнению с брандмауэрами с однокритериальной пакетной фильтрацией. Они проверяют каждый пакет, проходящий через их интерфейсы на корректность. Они исследуют не только заголовок пакета, но и информацию с прикладного уровня и полезную загрузку пакета. Таким образом, возможно создание различных правил, основанных на различных типах трафика. Такие брандмауэры так же позволяют контролировать состояние соединения и имеют базу данных с данной информацию, которая так же называется «база данных состояний». В ней описываются состояния соединений, т.е такие как «установлено», «закрыто», «перезапуск», «в процессе согласования». Такие брандмауэры хорошо защищают сеть от различных сетевых атак. Количество различных брандмауэров велико, и в настоящее время в них совмещаются различные техники предотвращения атак. Главное – сеть всегда должна находиться под защитой. Однако нельзя забывать, что не стоит увлекаться, и тратить на защиту информации больше средств, чем стоит сама информация.
img
Усаживайтесь на кушетку поудобнее. Зачем, в первую очередь, вы хотите сменить mac – адрес у вашего сервера на базе Linux? Может хотите блочить его на фаерволе, или попробовать совершить «магию» с лицензиями, которые привязаны к маку? В целом, дело ваше. Мы покажем способ, как это сделать. Давайте по шагам. Находим текущий mac – адрес сетевого интерфейса Сначала давайте посмотрим на текущий mac вашего сервера. Сделать это можно командой: ip link show Вывод сервера будет примерно таким. Он будет содержать параметры (mac - адреса всех ваших интерфейсов): 1: lo: mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eno1: mtu 1500 qdisc fq_codel state DOWN mode DEFAULT group default qlen 1000 link/ether 45:c6:f6:a7:12:30 brd ff:ff:ff:ff:ff:ff 3: enp0s12e2: mtu 1500 qdisc noqueue state UP mode DORMANT group default qlen 1000 link/ether 33:23:f8:8b:d7:65 brd ff:ff:ff:ff:ff:ff Как мы видим, например, у интерфейса enp0s12e2 текущий mac – адрес это 33:23:f8:8b:d7:65 . Давайте поменяем его. Меняем MAC с помощью Macchanger. Установка Macchanger - это ну очень простая утилита, чтобы смотреть, менять и управлять MAC – адресами на ваших сетевых интерфейсах. Она доступна на почти всех Linux – подобных системах. Например, чтобы установить Macchanger на Fedora, CentOS или RHEL используйте команду:/p> sudo dnf install macchanger А если у вас Debian, Ubuntu, Linux Mint или даже Kali Linux, то установить ее можно вот так: sudo apt install macchanger Как использовать Macchanger Помните имя интерфейса, которое мы обсудили чуть раньше? Ага, мы про enp0s12e2 Например, чтобы присвоить этому интерфейсу рандомный mac, используйте команду: sudo macchanger -r enp0s12e2 После смены, проверьте, что мак – адрес поменялся командой: ip addr Он стал другим, не так ли? Теперь, чтобы присвоить конкретный (нужный вам) мак интерфейсу, примените команду: macchanger --mac=XX:XX:XX:XX:XX:XX Где, как не сложно догадаться, XX:XX:XX:XX:XX:XX - mac, который вам нужен. Кстати, если вы поняли, что сделали что-то не то, то вернуть mac – адрес устройства к его изначальному значению можно вот так: macchanger -p enp0s12e2 Меняем MAC с помощью iproute Делать это через macchanger, честно говоря, правильнее. Однако, если не получилось/не хотите, то можно поступить вот так. Первое, выключаем интерфейс: sudo ip link set dev enp0s12e2 down Далее, присваиваем новый mac выключенному интерфейсу: sudo ip link set dev enp0s12e2 address XX:XX:XX:XX:XX:XX Не забываем включить интерфейс обратно: sudo ip link set dev enp0s12e2 up Смотрим статус: ip link show enp0s12e2 Итоги В статье мы обсудили два способа смены адреса: через утилиту macchanger и встроенную команду ip. Мы рекомендуем использовать macchanger, как более надежный способ. Однако, решать вам.
img
Транспортный уровень OSI (уровень 4) определяет несколько функций, наиболее важными из которых являются восстановление после ошибок и управление потоком. Точно так же протоколы транспортного уровня TCP / IP также реализуют те же типы функций. Обратите внимание, что и модель OSI, и модель TCP / IP называют этот уровень транспортным. Но, как обычно, когда речь идет о модели TCP / IP, имя и номер уровня основаны на OSI, поэтому любые протоколы транспортного уровня TCP / IP считаются протоколами уровня 4. Ключевое различие между TCP и UDP заключается в том, что TCP предоставляет широкий спектр услуг приложениям, а UDP-нет. Например, маршрутизаторы отбрасывают пакеты по многим причинам, включая битовые ошибки, перегрузку и случаи, в которых не известны правильные маршруты. Известно, что большинство протоколов передачи данных замечают ошибки (процесс, называемый error detection), и затем отбрасывают кадры, которые имеют ошибки. TCP обеспечивает повторную передачу (error recovery) и помогает избежать перегрузки (управление потоком), в то время как UDP этого не делает. В результате многие прикладные протоколы предпочитают использовать TCP. Разница между TCP и UDP в одном видео Однако не думайте, что отсутствие служб у UDP делает UDP хуже TCP. Предоставляя меньше услуг, UDP требует меньше байтов в своем заголовке по сравнению с TCP, что приводит к меньшему количеству байтов служебных данных в сети. Программное обеспечение UDP не замедляет передачу данных в тех случаях, когда TCP может замедляться намеренно. Кроме того, некоторым приложениям, особенно сегодня, к передаче голоса по IP (VoIP) и видео по IP, не требуется восстановление после ошибок, поэтому они используют UDP. Итак, сегодня UDP также занимает важное место в сетях TCP / IP. В таблице 1 перечислены основные функции, поддерживаемые TCP/UDP. Обратите внимание, что только первый элемент, указанный в таблице, поддерживается UDP, тогда как TCP поддерживаются все элементы в таблице. Таблица № 1 Функции транспортного уровня TCP/IP Функции Описание Мультиплексирование с использованием портов Функция, которая позволяет принимающим хостам выбирать правильное приложение, для которого предназначены данные, на основе номера порта. Восстановление после ошибок (надежность) Процесс нумерации и подтверждения данных с помощью полей заголовка Sequence и Acknowledgment Управление потоком с использованием окон Процесс, использующий размеры окна для защиты буферного пространства и устройств маршрутизации от перегрузки трафиком. Установление и завершение соединения Процесс, используемый для инициализации номеров портов, а также полей Sequence и Acknowledgment. Упорядоченная передача данных и сегментация данных Непрерывный поток байтов от процесса верхнего уровня, который "сегментируется" для передачи и доставляется процессам верхнего уровня на принимающем устройстве с байтами в том же порядке Далее описываются возможности TCP, а затем приводится краткое сравнение с UDP. Transmission Control Protocol Каждое приложение TCP / IP обычно выбирает использование TCP или UDP в зависимости от требований приложения. Например, TCP обеспечивает восстановление после ошибок, но для этого он потребляет больше полосы пропускания и использует больше циклов обработки. UDP не выполняет исправление ошибок, но требует меньшей пропускной способности и меньшего количества циклов обработки. Независимо от того, какой из этих двух протоколов транспортного уровня TCP / IP приложение выберет для использования, вы должны понимать основы работы каждого из этих протоколов транспортного уровня. TCP, как определено в Request For Comments (RFC) 793, выполняет функции, перечисленные в таблице 1, через механизмы на конечных компьютерах. TCP полагается на IP для сквозной доставки данных, включая вопросы маршрутизации. Другими словами, TCP выполняет только часть функций, необходимых для доставки данных между приложениями. Кроме того, роль, которую он играет, направлена на предоставление услуг для приложений, установленных на конечных компьютерах. Независимо от того, находятся ли два компьютера в одном Ethernet или разделены всем Интернетом, TCP выполняет свои функции одинаково. На рисунке 1 показаны поля заголовка TCP. Хотя вам не нужно запоминать названия полей или их расположение, оставшаяся часть этой лекции относится к нескольким полям, поэтому весь заголовок включен сюда для справки. Сообщение, созданное TCP, которое начинается с заголовка TCP, за которым следуют данные приложения, называется сегментом TCP. В качестве альтернативы также может использоваться более общий термин PDU уровня 4 или L4PDU. Мультиплексирование с использованием номеров портов TCP И TCP, и UDP используют концепцию, называемую мультиплексированием. Поэтому этот подраздел начинается с объяснения мультиплексирования с TCP и UDP. После этого исследуются уникальные возможности TCP. Мультиплексирование по TCP и UDP включает в себя процесс того, как компьютер думает при получении данных. На компьютере может быть запущено множество приложений, таких как веб-браузер, электронная почта или приложение Internet VoIP (например, Skype). Мультиплексирование TCP и UDP сообщает принимающему компьютеру, какому приложению передать полученные данные. Определенные примеры помогут сделать очевидной необходимость мультиплексирования. Сеть из примера состоит из двух компьютеров, помеченных как Анна и Гриша. Анна использует написанное ею приложение для рассылки рекламных объявлений, которые появляются на экране Григория. Приложение отправляет Григорию новое объявление каждые 10 секунд. Анна использует второе приложение, чтобы отправить Грише деньги. Наконец, Анна использует веб-браузер для доступа к веб-серверу, который работает на компьютере Григория. Рекламное приложение и приложение для электронного перевода являются воображаемыми, только для этого примера. Веб-приложение работает так же, как и в реальной жизни. На рисунке 2 показан пример сети, в которой Гриша запускает три приложения: Рекламное приложение на основе UDP Приложение для банковских переводов на основе TCP Приложение веб-сервера TCP Грише необходимо знать, в какое приложение передавать данные, но все три пакета поступают из одного и того же Ethernet и IP-адреса. Вы могли подумать, что Григорий может посмотреть, содержит ли пакет заголовок UDP или TCP, но, как вы видите на рисунке, два приложения (wire transfer и web) используют TCP. TCP и UDP решают эту проблему, используя поле номера порта в заголовке TCP или UDP соответственно. Каждый из сегментов TCP и UDP Анны использует свой номер порта назначения, чтобы Григорий знал, какому приложению передать данные. На рисунке 3 показан пример. Мультиплексирование основывается на концепции, называемой сокетом. Сокет состоит из трех частей: IP-адрес Транспортный протокол Номер порта Итак, для приложения веб-сервера Григория, сокет будет (10.1.1.2, TCP, порт 80), потому что по умолчанию веб-серверы используют хорошо известный порт 80. Когда веб-браузер Анны подключается к веб-серверу, Анна также использует сокет - возможно, такой: (10.1.1.1, TCP, 49160). Почему 49160? Что ж, Анне просто нужен номер порта, уникальный для Анны, поэтому Анна видит этот порт 49160. Internet Assigned Numbers Authority (IANA), организация, которая управляет распределением IP-адресов во всем мире, и подразделяет диапазоны номеров портов на три основных диапазона. Первые два диапазона резервируют номера, которые IANA затем может назначить конкретным протоколам приложений через процесс приложения и проверки, а третья категория резервирует порты, которые будут динамически выделяться для клиентов, как в примере с портом 49160 в предыдущем абзаце. Имена и диапазоны номеров портов (более подробно описано в RFC 6335): Хорошо известные (системные) порты: номера от 0 до 1023, присвоенные IANA, с более строгим процессом проверки для назначения новых портов, чем пользовательские порты. Пользовательские (зарегистрированные) порты: номера от 1024 до 49151, присвоенные IANA с менее строгим процессом назначения новых портов по сравнению с хорошо известными портами. Эфемерные (динамические, частные) порты: номера от 49152 до 65535, не назначены и не предназначены для динамического выделения и временного использования для клиентского приложения во время его работы. На рисунке 4 показан пример, в котором используются три временных порта на пользовательском устройстве слева, а сервер справа использует два хорошо известных порта и один пользовательский порт. Компьютеры используют три приложения одновременно; следовательно, открыто три сокетных соединения. Поскольку сокет на одном компьютере должен быть уникальным, соединение между двумя сокетами должно идентифицировать уникальное соединение между двумя компьютерами. Эта уникальность означает, что вы можете использовать несколько приложений одновременно, разговаривая с приложениями, запущенными на одном или разных компьютерах. Мультиплексирование на основе сокетов гарантирует, что данные будут доставлены в нужные приложения. Номера портов являются важной частью концепции сокетов. Серверы используют хорошо известные порты (или пользовательские порты), тогда как клиенты используют динамические порты. Приложения, которые предоставляют услуги, такие как FTP, Telnet и веб-серверы, открывают сокет, используя известный порт, и прослушивают запросы на подключение. Поскольку эти запросы на подключение от клиентов должны включать номера портов источника и назначения, номера портов, используемые серверами, должны быть известны заранее. Таким образом, каждая служба использует определенный хорошо известный номер порта или номер пользовательского порта. Как общеизвестные, так и пользовательские порты перечислены на www.iana.org/assignments/servicenames-port-numbers/service-names-port-numbers.txt. На клиентских машинах, откуда исходят запросы, можно выделить любой локально неиспользуемый номер порта. В результате каждый клиент на одном и том же хосте использует другой номер порта, но сервер использует один и тот же номер порта для всех подключений. Например, 100 веб-браузеров на одном и том же хост-компьютере могут подключаться к веб-серверу, но веб-сервер со 100 подключенными к нему клиентами будет иметь только один сокет и, следовательно, только один номер порта (в данном случае порт 80). Сервер может определить, какие пакеты отправлены от какого из 100 клиентов, посмотрев на порт источника полученных сегментов TCP. Сервер может отправлять данные правильному веб-клиенту (браузеру), отправляя данные на тот же номер порта, который указан в качестве порта назначения. Комбинация сокетов источника и назначения позволяет всем участвующим хостам различать источник и назначение данных. Хотя в примере объясняется концепция использования 100 TCP-соединений, та же концепция нумерации портов применяется к сеансам UDP таким же образом. Почитайте продолжение цикла про популярные приложения TCP/IP.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59