По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Неизменяемая резервная копия защищает данные, фиксируя их и не позволяя их менять. Этот тип резервного копирования предотвращает возможность удаления данных и позволяет восстановить их в любое время. В результате неизменяемые резервные копии защищают данные от случайного или преднамеренного удаления данных или атак программ-вымогателей. Что же такое неизменяемые резервные копии? Данные – это критически важная часть любой организации. Именно по этой причине они являются основной целью кибератак. Программа-вымогатель – это тип вредоносного ПО, которое шифрует данные так, что их больше нельзя использовать. Шифрование может доходить до уровня загрузочной записи, чтобы загрузка была невозможна. Это также распространяется и на резервные копии данных. Атака программы-вымогателя приводит к отключению важнейших бизнес-служб. Для того, чтобы получить доступ к вашим данным снова, вам придется заплатить выкуп. Одним из способов минимизировать вред от атак программ-вымогателей является регулярное резервное копирование данных, что является последней линией защиты. Однако обычное копирование данных вовсе не означает, что они защищены от кибератак. Усовершенствованные атаки программ-вымогателей могут быть теперь нацелены и на резервные копии. Злоумышленники могут изменить или удалить резервную копию и потребовать крупный выкуп. Чтобы предотвратить такую ситуацию, можно воспользоваться неизменяемой резервной копией. Неизменяемость препятствует несанкционированному доступу к данным или их удалению. Наличие неизменяемой резервной копии гарантирует, что у вас всегда будет самая последняя верная копия ваших данных, безопасная и доступная для восстановления в любое время. Неизменяемые резервные копии создаются путем копирования битов данных в облако сразу после их создания. После того, как данные попадут в облако, пользователь может установить флаг неизменяемости (неизменяемости битов). Этот флаг блокирует данные, предотвращая случайное удаление данных, заражение вредоносным ПО или повреждение данных. Пользователь может установить флаг на определенный период времени. То есть если вы установите флаг на семь дней, то не сможете удалить или изменить резервную копию в течение этого периода времени. Вы можете хранить краткосрочные неизменяемые резервные копии локально или многоуровневые резервные копии данных в неизменяемом объектном хранилище удаленно. Таким образом, вы защищаете данные от непредвиденного вредоносного действия или случайного удаления. Недостатки изменяемой инфраструктуры Изменяемая инфраструктура – это инфраструктура информационного сервера, которую можно постоянно изменять и обновлять в обычном порядке. Несмотря на то, что такая инфраструктура имеет свои преимущества, она также имеет и несколько недостатков в сравнении с неизменяемой инфраструктурой. Недостатки изменяемой инфраструктуры следующие: Конфигурационный дрейф. Изменения конфигурации сервера не регистрируются систематически, трудно диагностировать или воспроизвести технические проблемы. Недискретное управление версиями. Отслеживание версий затруднено, поскольку изменения сервера не всегда документируются. Ошибки обновления. Обновления с большей долей вероятности завершатся сбоем из-за различных проблем с сетью (DNS в автономном режиме, плохое подключение, не отвечающие репозитории и т.д.) Медленная отладка. Проблемы с отслеживанием версий замедляют процесс отладки. Следовательно, пользователи могут столкнуться с несколькими версиями обновлений и большими рабочими нагрузками в случае обновлений с ошибками. Повышенный риск. Изменяемая инфраструктура увеличивает риск потери данных и атак программ-вымогателей, если сравнивать с неизменяемой инфраструктурой. Ручная настройка. Изменяемая инфраструктура требует ручной настройки сервера, что проводит к увеличению длительности процесса подготовки серверов. Как реализовать стратегию неизменяемого резервного копирования? Компании часто пытаются противостоять программам-вымогателям, вкладывая средства в надежную и устойчивую к отказам систему защиты. Однако лучше стоит подготовиться к наихудшему сценарию – сценарию, при котором системы защиты компании откажут. Внедрение стратегии неизменяемого резервного копирования – лучший способ защитить ваши данные и быстро отреагировать на кибератаку без необходимости платить огромный выкуп. Многие передовые методы резервного копирования и восстановления данных не защищены от атак программ-вымогателей. Например, репликация данных в удаленный центр обработки данных не обеспечивает защиту от программ-вымогателей, поскольку непрерывное резервное копирование может перезаписывать исправные файлы зашифрованными версиями. Поэтому сложно точно определить начальную точку возникновения вируса. Правило резервного копирования 3-2-1 (3-2-1 backup rule) – это стратегия защиты данных, которая предполагает, как минимум, три копии данных. Две копии являются локальными, но находятся на разных носителях, а третья – удаленная (например, неизменяемая резервная копия с воздушным зазором в облаке). Передовые методы для реализации неизменяемого резервного копирования: Целостность данных Лучший способ защитить резервную копию данных – хранить ее на платформе, которая не позволит вносить изменения. Некоторые фирмы-поставщики предлагают объектно-ориентированное хранилище, которое делает невозможным изменение данных или их шифрование при атаке программы-вымогателя. Модель нулевого доверия Такая модель включает строгую проверку личности для любого, кто получает доступ к вашим резервным копиям данных в частной сети. Такой целостный подход состоит из нескольких методов и технологий, которые обеспечивают повышенный уровень безопасности и надежность резервного копирования. Один из таких методов – усиление безопасности с помощью многофакторной аутентификации. Многоуровневая устойчивость к отказам Хорошая стратегия защиты сочетает в себе неизменяемое резервное копирование данных с новейшими технологиями кибербезопасности и обучением сотрудников. Платформы, включающие в себя функции предотвращения удаления лишних файлов или удаления с возможность восстановления, гарантируют наличие копии данных, даже если программа-вымогатель проникнет в систему. Другой уровень защиты заключается в использовании формата WORM (write once read many - однократная запись и многократное считывание), который предлагают многие фирмы-поставщики. Автоматическое реагирование Атаки программ-вымогателей обычно происходят через несколько месяцев после того, как система была заражена. Злоумышленники специально выжидают столько времени, чтобы программа-вымогатель могла незаметно распространиться и найти все резервные копии данных. Затем, когда в офисе никого не остается, они заполучает ваши данные. Внедрите систему автоматического реагирования в решение для резервного копирования, чтобы помещать зараженные системы в «карантин», даже если в этот момент в офисе никого нет. «Чистое» восстановление Убедитесь, то ваша резервная копия данных не содержит вредоносных программ, чтобы предотвратить повторное заражение. Сканируйте резервные копии на наличие вредоносных программ или индикаторов компрометации перед тем, как восстанавливать данные. Храните неизменяемые резервные копии данных в формате WORM, чтобы защитить данные от шифрования и обеспечить быстрое восстановление данных. Заключение Теперь вы знаете, что такое неизменяемые резервные копии и как они могут защитить ваши данные от кибератак. Когда речь идет о программах-вымогателях, то лучшее нападение – это надежная защита.
img
Перед тем как начать: это цикл статей. Мы рекомендуем до этого материала ознакомиться со статьей про Interlayer Discovery. Хотя IPv6 является основной темой этих лекций, в некоторых случаях IPv4 представляет собой полезный пример решения; Address Resolution Protocol IPv4 (ARP) является одним из таких случаев. ARP - это очень простой протокол, используемый для решения проблемы межуровневого обнаружения, не полагаясь на сервер любого типа. Рисунок ниже будет использован для объяснения работы ARP. Предположим, A хочет отправить пакет C. Зная IPv4-адрес C, 203.0.113.12 недостаточно, чтобы A правильно сформировал пакет и поместил его на канал связи по направлению к C. Чтобы правильно построить пакет, A также должен знать: Находится ли C на том же канале связи, что и A MAC или физический адрес C Без этих двух частей информации A не знает, как инкапсулировать пакет в канал связи, поэтому C фактически получит пакет, а B проигнорирует его. Как можно найти эту информацию? На первый вопрос, находится ли C на том же канале вязи, что и A, можно ответить, рассмотрев IP-адрес локального интерфейса, IP-адрес назначения и маску подсети. ARP решает вторую проблему, сопоставляя IP-адрес назначения с MAC-адресом назначения, с помощью следующего процесса: Хост A отправляет широковещательный пакет каждому устройству в сети, содержащему адрес IPv4, но не MAC-адрес. Это запрос ARP; это запрос A на MAC-адрес, соответствующий 203.0.113.12. B и D получают этот пакет, но не отвечают, поскольку ни один из их локальных интерфейсов не имеет адреса 203.0.113.12. Хост C получает этот пакет и отвечает на запрос, снова используя unicast пакет. Этот ответ ARP содержит как IPv4-адрес, так и соответствующий MAC-адрес, предоставляя A информацию, необходимую для создания пакетов в направлении C. Когда A получает этот ответ, он вставляет сопоставление между 203.0.113.12 и MAC-адресом, содержащимся в ответе, в локальном кэше ARP. Эта информация будет храниться до истечения времени ожидания; правила тайм-аута записи кэша ARP различаются в зависимости от реализации и часто могут быть настроены вручную. Продолжительность кэширования записи ARP - это баланс между слишком частым повторением одной и той же информации в сети в случае, когда сопоставление IPv4-адресов с MAC-адресами не меняется очень часто, и отслеживанием любых изменений в расположении устройство в случае, когда конкретный адрес IPv4 может перемещаться между хостами. Когда A получает этот ответ, он вставляет сопоставление между 203.0.113.12 и MAC-адресом, содержащимся в ответе, в локальный кэш ARP. Эта информация будет храниться до тех пор, пока не истечет время ожидания; правила для тайм-аута записи кэша ARP варьируются в зависимости от реализации и часто могут быть настроены вручную. Продолжительность кэширования записи ARP - это баланс между тем, чтобы не повторять одну и ту же информацию слишком часто в сети, в случае, когда сопоставление IPv4-MAC-адресов меняется не очень часто, и идти в ногу с любыми изменениями в местоположении устройства, в случае, когда конкретный IPv4-адрес может перемещаться между хостами. Любое устройство, получающее ответ ARP, может принять пакет и кэшировать содержащуюся в нем информацию. Например, B, получив ответ ARP от C, может вставить сопоставление между 203.0.113.12 и MAC-адресом C в свой кэш ARP. Фактически, это свойство ARP часто используется для ускорения обнаружения устройств, когда они подключены к сети. В спецификации ARP нет ничего, что требовало бы от хоста ожидания запроса ARP для отправки ответа ARP. Когда устройство подключается к сети, оно может просто отправить ответ ARP с правильной информацией о сопоставлении, чтобы ускорить процесс начального подключения к другим узлам на том же проводе; это называется gratuitous ARP. Gratuitous ARP также полезны для Duplicate. Gratuitous ARP также полезны для обнаружения дублирующихся адресов (Duplicate Address Detection - DAD); если хост получает ответ ARP с адресом IPv4, который он использует, он сообщит о дублированном адресе IPv4. Некоторые реализации также будут посылать серию gratuitous ARPs в этом случае, чтобы предотвратить использование адреса или заставить другой хост также сообщить о дублирующемся адресе. Что произойдет, если хост A запросит адрес, используя ARP, который не находится в том же сегменте, например, 198.51.100.101 на рисунке 5? В этой ситуации есть две разные возможности: Если D настроен для ответа как прокси-ARP, он может ответить на запрос ARP с MAC-адресом, подключенным к сегменту. Затем A кэширует этот ответ, отправляя любой трафик, предназначенный для E, на MAC-адрес D, который затем может перенаправить этот трафик на E. Наиболее широко распространенные реализации по умолчанию не включают прокси-ARP. A может отправлять трафик на свой шлюз по умолчанию, который представляет собой локально подключенный маршрутизатор, который должен знать путь к любому пункту назначения в сети. IPv4 ARP - это пример протокола, который отображает interlayer идентификаторы путем включения обоих идентификаторов в один протокол. Обнаружение соседей IPv6 IPv6 заменяет более простой протокол ARP серией сообщений Internet Control Message Protocol (ICMP) v6. Определены пять типов сообщений ICMPv6: Тип 133, запрос маршрутизатора Тип 134, объявление маршрутизатора Тип 135, запрос соседа Тип 136, объявление соседа Тип 137, перенаправление Рисунок ниже используется для объяснения работы IPv6 ND. Чтобы понять работу IPv6 ND, лучше всего проследить за одним хостом, поскольку он подключен к новой сети. Хост A на рисунке ниже используется в качестве примера. A начнет с формирования link local address, как описано ранее. Предположим, A выбирает fe80 :: AAAA в качестве link local address. Теперь A использует этот link local address в качестве адреса источника и отправляет запрос маршрутизатору на link local multicast address (адрес многоадресной рассылки для всех узлов). Это сообщение ICMPv6 типа 133. B и D получают этот запрос маршрутизатора и отвечают объявлением маршрутизатора, которое является сообщением ICMPv6 типа 134. Этот одноадресный пакет передается на локальный адрес канала A, используемый в качестве адреса источника, fe80 :: AAAA. Объявление маршрутизатора содержит информацию о том, как вновь подключенный хост должен определять информацию о своей локальной конфигурации в виде нескольких флагов. Флаг M указывает, что хост должен запросить адрес через DHCPv6, потому что это управляемый канал. Флаг O указывает, что хост может получать информацию, отличную от адреса, который он должен использовать через DHCPv6. Например, DNS-сервер, который хост должен использовать для разрешения имен DNS, должен быть получен с помощью DHCPv6. Если установлен флаг O, а не флаг M, A должен определить свой собственный IPv6-адрес интерфейса. Для этого он определяет набор префиксов IPv6, используемых в этом сегменте, исследуя поле информации о префиксе в объявлении маршрутизатора. Он выбирает один из этих префиксов и формирует IPv6-адрес, используя тот же процесс, который он использовал для формирования link local address: он добавляет локальный MAC-адрес (EUI-48 или EUI-64) к указанному префиксу. Этот процесс называется SLAAC. Теперь хост должен убедиться, что он не выбрал адрес, который использует другой хост в той же сети; он должен выполнять DAD. Чтобы выполнить обнаружение повторяющегося адреса: Хост отправляет серию сообщений запроса соседей, используя только что сформированный IPv6-адрес и запрашивая соответствующий MAC-адрес (физический). Это сообщения ICMPv6 типа 135, передаваемые с link local address, уже назначенного интерфейсу. Если хост получает объявление соседа или запрос соседа с использованием того же адреса IPv6, он предполагает, что локально сформированный адрес является дубликатом; в этом случае он сформирует новый адрес, используя другой локальный MAC-адрес, и попытается снова. Если хост не получает ни ответа, ни запроса соседа другого хоста, использующего тот же адрес, он предполагает, что адрес уникален, и назначает вновь сформированный адрес интерфейсу. Устранение ложных срабатываний при обнаружении повторяющегося адреса Процесс DAD, описанный здесь, может привести к ложным срабатываниям. В частности, если какое-то другое устройство на канале связи передает исходные пакеты запроса соседа обратно к A, оно будет считать, что это от другого хоста, требующего тот же адрес, и, следовательно, объявит дубликат и попытается сформировать новый адрес. Если устройство постоянно повторяет все запросы соседей, отправленные A, A никогда не сможет сформировать адрес с помощью SLAAC. Чтобы решить эту проблему, RFC7527 описывает усовершенствованный процесс DAD. В этом процессе A будет вычислять одноразовый номер, или, скорее, случайно выбранную серию чисел, и включать ее в запрос соседей, используемый для проверки дублирования адреса. Этот одноразовый номер включен через расширения Secure Neighbor Discovery (SEND) для IPv6, описанные в RFC3971. Если A получает запрос соседа с тем же значением nonce, который он использовал для отправки запроса соседа вовремя DAD, он сформирует новый одноразовый номер и попытается снова. Если это произойдет во второй раз, хост будет считать, что пакеты зацикливаются, и проигнорирует любые дальнейшие запросы соседей с собственным одноразовым номером в них. Если полученные запросы соседей имеют одноразовый номер, отличный от того, который выбрал локальный хост, хост будет предполагать, что на самом деле существует другой хост, который выбрал тот же адрес IPv6, и затем сформирует новый адрес IPv6. Как только у него есть адрес для передачи данных, A теперь требуется еще одна часть информации перед отправкой информации другому хосту в том же сегменте - MAC-адрес принимающего хоста. Если A, например, хочет отправить пакет в C, он начнет с отправки multicast сообщения запроса соседа на C с запросом его MAC-адреса; это сообщение ICMPv6 типа 135. Когда C получает это сообщение, он ответит с правильным MAC-адресом для отправки трафика для запрошенного IPv6-адреса; это сообщение ICMPv6 типа 136. В то время как предыдущий процесс описывает объявления маршрутизатора, отправляемые в ответ на запрос маршрутизатора, каждый маршрутизатор будет периодически отправлять объявления маршрутизатора на каждом подключенном интерфейсе. Объявление маршрутизатора содержит поле lifetime, указывающее, как долго действует объявление маршрутизатора. А теперь почитайте о проблемах шлюза по умолчанию. У нас получился отличным материал на эту тему.
img
Операционные системы Unix традиционно используют такие понятия, как стандартный ввод, вывод и вывод ошибки. Чаще всего ввод — это клавиатура, а вывод это на кран. Но конечно же мы можем выводить исполнение какой-то команды в файл и передавать другой команде, потому что работая в Linux, создается такая последовательность из команд, т.е результат предыдущей мы отправляем следующей и т.д Целью данной статьи является рассмотреть: Перенаправление стандартных ввода, вывода и ошибок; Передача вывода одной команды в качестве аргументов другой; Получение выходных данных в файл и на стандартный вывод; Основные понятия: Stdin (0) – ввод Stdout(1) – вывод Stderr (2) – вывод ошибки > - передать в >> - дописать в list.txt. По сути означает выполнить команду, а результат передать в файл. Фал можно посмотреть командой cat list.txt. И мы можем убедится, что в данном файле находится перечень, всего что находилось в данной папке. Если мы выполним еще раз команду ls > list.txt, то данный файл каждый раз будет перезаписываться. Если же мы хотим, чтобы наш файл не перезаписывался, а дописывался, используем другую стрелочку ls >> list.txt. И теперь вы можете видеть, что файл стал больше. Т.е. у нас записалось, то что было, а затем еще раз добавилось. Если опять выполнить команду со стрелочками >> , то опять допишется информация в файл. Вот таким образом работают “стрелочки”. Стандартный вывод ошибок. Мы можем, например, сказать машине, выведи нам содержимое папки bob, которая не существует ls bob > result.txt, естественно мы получим ошибку которую система вывела на экран. Экран является стандартным выводом ошибок. В нашем случае нет папки bob и нет файла resut.txt. Если мы хотим отправить ошибку в файл, так же как результат выполнения команды, то ls bob 2> result.txt, вспоминаем основные понятия, в которых было указанно, что 2 – это стандартный вывод ошибки. Следовательно, на экране мы уже не видим ошибки, потому что она отправилась в указанный файл. Кстати мы можем объединить стандартный вывод команды и стандартный вывод ошибки. Например: ls bob > result.txt 2> error.txt. Выведи содержимое папки bob в файл result.txt, а если возникнет ошибка внеси в файл error.txt. В таком случае и команда выполнится и что-то будет в файле и если ошибка возникнет, то она будет записана в файл error.txt. Это можно применять на практике, когда мы что-то делаем и предполагаем, что в процессе выполнения возникнут ошибки, то используя данную конструкцию данные ошибки мы все можем отправить в отдельный файл. Конвейер Конвейер умеет передавать выходные данные из одной программы, как входные данные для другой. Т.е. выполняется команда, мы получаем результат и передаем эти данные далее на обработку другой программе. Например, выполнить команду ls и далее мы могли стрелочкой отправлять результаты выполнения команды в файл, т.е. мы меняли только стандартный вывод, а не передавали другой программе. А можем выполнить ls | grep r , т.е. получить содержимое и передать по конвейеру команде сортировки и сказать отсортировать по наличию буквы r, а если перенаправить еще вывод в файл, то cat имя файла , мы сможем увидеть информацию в файле. Но есть другая команда tee которая позволяет работать немного удобнее. Например: ls | tee output.txt. Те данная команда выводит информацию сразу на экран и в указанный файл. Что достаточно удобно с точки зрения работы с выводами. И еще одна команда xargs – она построчно работает с выводами. Если у нас есть какая-то команда, которая выдает нам вывод в виде нескольких строк ответа, то мы можем эти строки построчно передавать этой команде, т.е. не одной кашей, а построчно. Например find . –name “*.txt” найти все файлы в текущем каталоге с расширением txt. И если бы мы захотели удалить все эти файлы нам бы пришлось построчно их удалять, но мы можем сказать, чтобы выходные данные были переданы по конвейеру xargs и удалить. find . –name “*.txt” | xargs rm -f Как видите после данной конструкции команд файлов не осталось. Т.е. данные построчно передались на команду удаления, которая построчно каждый файл с ключом –f (принудительно) их и удалила.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59