По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Все мы любим компьютеры. Они могут делать столько удивительных вещей. За пару десятилетий компьютеры произвели самую настоящую революцию почти во всех аспектах человеческой жизни. Они могут справляться с задачами различной степени сложности, просто переворачивая нули и единицы. Просто удивительно, как такое простое действие может привести к такому уровню сложности. Но я уверен, что вы все знаете, что такой сложности нельзя добиться (практически нельзя) простым случайным переворачиванием чисел. Но за этим стоит определенные логические рассуждения. Есть правила, которые определяют, как это все должно происходить. В данной статье мы обсудим эти правила и увидим, как они управляют «мышлением» компьютера. Что такое булева алгебра? Это правила, о которых я упоминал выше, описываются некой областью математики, называемой булевой алгеброй. В своей книге 1854 года британский математик Джордж Буль предложил использовать систематический набор правил для работы со значениями истинности. Эти правила положили математическую основу для работы с логическими высказываниями. А эти основы привели к развитию булевой алгебры. Для того, чтобы понять, что из себя представляет булева алгебра, сначала мы должны понять сходства и различия между ней и другими формами алгебры. Алгебра в целом занимается изучением математических символов и операций, которые можно выполнять над этими символами. Эти символы сами по себе ничего не значат. Они обозначают некую величину. Именно эти величины и придают ценность этим символам, и именно с этими величинами и выполняются операции. Булева алгебра также имеет дело с символами и правилами, позволяющими выполнять различные операции над этими символами. Разница заключается в том, что эти символы что-то значат. В случае обычной алгебры символы обозначают действительные числа. А в булевой алгебре они обозначают значения истинности. На рисунке ниже представлен весь набор действительных чисел. Набор действительных чисел включает натуральные числа (1, 2, 3, 4, …), положительные целые числа (все натуральные числа и 0), целые числа (…, -2, -1, 0, 1, 2, 3, …) и т.д. Обычная алгебра имеет дело со всем этим набором чисел. Для сравнения, значения истинности состоят из набора, который включает в себя только два значения: True и False. Здесь я хотел бы отметить, что мы можем использовать любые другие символы для обозначения этих значений. Например, в информатике, как правило, эти значения обозначают через 0 и 1 (0 используется в качестве False, 1 – в качестве True). Вы также можете сделать это более оригинальным способом, обозначая значения истинности какими-то другими символами, например, кошки и собаки или бананы и апельсины. Суть здесь в том, что смысл этих значений останется неизменным, как бы вы их не обозначили. Но убедитесь, что вы не меняете символы в процессе выполнения операций. Теперь вопрос в том, что если (True и False), (0 и 1) – это просто обозначения, то что же они пытаются обозначить? Смысл, лежащий в основе значений истинности, исходит из области логики, где значения истинности используются для того, чтобы определить, является ли высказывание «Истинным» (True) или «Ложным» (False). Здесь значения истинности обозначают соответствие высказывания истине, то есть показывают, является ли высказывание истинным или ложным. Высказывание – это просто некоторое утверждение, что-то вроде «Все кошки милые». Если приведенное выше высказывание верно, то мы присваиваем ему значение истинности «Истина» (True) или «1», в противном случае мы присваиваем ему значение истинности «Ложь» (False) или «0». В цифровой электронике значения истинности используются для обозначения состояний электронных схем «включено» и «выключено». Подробнее об этом мы поговорим позже в этой же статье. Логические операции и таблицы истинности Как и в обычной алгебре, в булевой алгебре также можно применять операции к значениям для получения некоторых результатов. Однако эти операции не похожи на операции в обычной алгебре, поскольку, как мы уже упоминали ранее, булева алгебра работает со значениями истинности, а не с действительными числами. В булевой алгебре есть три основные операции. OR: OR или "ИЛИ", также известная как дизъюнкция. Эта операция выполняется над двумя логическими переменными. Результатом операции OR будет 0, если оба операнда равны 0, иначе будет 1. Для того, чтобы более наглядно продемонстрировать принцип работы этой операции, визуализируем ее с помощью таблицы истинности. Таблицы истинности дают нам хорошее представление о том, как работают логические операции. Также это удобный инструмент для выполнения логических операций. Операция OR: Переменная 1 Переменная 2 Результат 0 0 0 0 1 1 1 0 1 1 1 1 AND: AND или "И", также известная как конъюнкция. Эта операция выполняется над двумя логическими переменными. Результатом операции AND будет 1, если оба операнда равны 1, иначе будет 0. Таблица истинности выглядит следующим образом. Операция AND: Переменная 1 Переменная 2 Результат 0 0 0 0 1 0 1 0 0 1 1 1 NOT: NOT или "НЕ", также известное как отрицание. Эта операция выполняется только над одной переменной. Если значение переменной равно 1, то результатом этой операции будет 0, и наоборот, если значение переменной равно 0, то результатом операции будет 1. Операция NOT: Переменная 1 Результат 0 1 1 0 Булева алгебра и цифровые схемы Булева алгебра после своего появления очень долго оставалась одним из тех понятий в математике, которые не имели какого-то значительного практического применения. В 1930-х годах Клод Шеннон, американский математик, обнаружил, что булеву алгебру можно использовать в схемах, где двоичные переменные могут обозначать сигналы «низкого» и «высокого» напряжения или состояния «включено» и «выключено». Эта простая идея создания схем с помощью булевой алгебры привела к развитию цифровой электроники, которая внесла большой вклад в разработку схем для компьютеров. Цифровые схемы реализуют булеву алгебру при помощи логических элементов – схем, обозначающих логическую операцию. Например, элемент OR будет обозначать операцию OR. То же самое относится и к элементам AND и NOT. Наряду с основными логическими элементами существуют и логические элементы, которые можно создать путем комбинирования основных логических элементов. NAND: элемент NAND, или "И-НЕ", образован комбинацией элементов NOT и AND. Элемент NAND дает на выходе 0, если на обоих входах 1, в противном случае – 1. Элемент NAND обладает свойством функциональной полноты. Это означает, что любая логическая функция может быть реализована только с помощью элементов NAND. Элемент NAND: Вход 1 Вход 2 Результат 0 0 1 0 1 1 1 0 1 1 1 0 NOR: элемент NOR, или "ИЛИ-НЕ", образован комбинацией элементов NOT и OR. Элемент NOR дает на выходе 1, если на обоих входах 0, в противном случае – 0. Элемент NOR, как и элемент NAND, обладает свойством функциональной полноты. Это означает, что любая логическая функция может быть реализована только с помощью элементов NOR. Элемент NOR: Вход 1 Вход 2 Результат 0 0 1 0 1 0 1 0 0 1 1 0 Большинство цифровых схем построены с использованием элементов NAND и NOR из-за их функциональной полноты, а также из-за простоты изготовления. Помимо элементов, рассмотренных выше, существуют также особые элементы, которые служат для определенных целей. Вот они: XOR: элемент XOR, или "исключающее ИЛИ", - это особый тип логических элементов, который дает на выходе 0, если оба входа равны 0 или 1, в противном случае – 1. Элемент XOR: Вход 1 Вход 2 Результат 0 0 0 0 1 1 1 0 1 1 1 0 XNOR: элемент XNOR, или "исключающее ИЛИ-НЕ", - это особый тип логических элементов, который дает на выходе 1, когда оба входа равны 0 или 1, в противном случае – 0. Элемент XNOR: Вход 1 Вход 2 Результат 0 0 1 0 1 0 1 0 0 1 1 1 Заключение Итак, на этом мы можем закончить обсуждение булевой алгебры. Надеюсь, что к текущему моменту у вас сложилась неплохая картина того, что же такое булева алгебра. Это, конечно, далеко не все, что вам следует знать о булевой алгебре. В ней есть множество понятий и деталей, которые мы не обсудили в данной статье.
img
Всем привет! Мы продолжаем знакомить вас с бесплатным дайлером GoAutodial и сегодня расскажем, как создать простейшую компанию, загрузить в неё лидов для обзвона и, собственно, начать уже пользоваться благами данного решения. Предисловие В нашей прошлой статье мы показали пошаговую установку GoAutoDial и остановились на том, что получили доступ к вэб-интерфейсу администратора. Не лишним будет отметить, что помимо интерфейса администратора, GoAutoDial CE 3.0 устанавливает ещё кучу полезных дополнительных интерфейсов. Ниже приводим таблицу всех доступов и дефолтные пароли всех интерфейсов, которые становятся доступными после установки: Доступы Логин Пароль MySQL (mysql -u root -p) http://IP-адрес_сервера/phpmyadmin/ root vicidialnow Limesurvey (Опросы) http://IP-адрес_сервера/limesurvey/admin/admin.php admin kamote1234 Интерфейс администратора – http://IP-адрес_сервера/ admin goautodial Интерфейс агента - http://IP-адрес_сервера/agent/ с agent001 до agent020 goautodial Учётная запись (SIP) с 8001 до 8020 goautodial Настройка Теперь, когда мы разобрались с доступами, переходим к настройке. Пока что нас интересует интерфейс администратора, поэтому просто вписываем адрес нашего сервера в адресную строку любимого браузера и вводим дефолтные реквизиты доступа: admin/ goautodial. Нас встречает довольно симпатичный дашборд: Управление и навигация в интерфейсе администратора осуществляются с помощью панели задач, которая находится слева. Первое, что необходимо сделать, прежде чем мы сможем начать использовать GoAutoDial по назначению - это, конечно, настройка внешней линии (trunk) для звонков в PSTN. В GoAutoDial это называется - Carriers. Итак, наводимся на панельку слева и выбираем Admin Settings → Carriers: Перед нами открывается пошаговый помощник добавления новой внешней линии. Выберем тип Manual и продолжим: В GoAutoDial доступно два вида аутентификации – IP Based и Registrationв зависимости от того, какой использует ваш VoIP провайдер – выберите подходящий. Заполняем все поля, как если бы создавали новый транк на FreePBX. Подробнее о том, как зарегистрировать транк – читайте в нашей статье. Заполняем все необходимые поля и кликаем Submit. Теперь линию нужно активировать, для этого открываем её ещё раз для редактирования и меняем предпоследний параметр в открывшемся к окне - Active с N на Y. Отлично, теперь мы можем создать компанию обзвона. Для этого в панели слева выбираем Telephony → Campaigns. Откроется пошаговый помощник, который по умолчанию начнёт создавать компанию. Если вы хотите ввести ID и название компании самостоятельно - поставьте галочку в (check to edit campaign id and name): Далее необходимо загрузить файл Excel, содержащий необходимые для обзвона данные. Главное- это сами номера и имена абонентов. Вы можете скачать пример нашего файла по ссылке, чтобы понять какой формат распознаёт GoAutoDial (поля не обязательно должны называться именно так как у нас в файле, также вы можете сделать дополнительные поля). Выберите код страны (в нашем случае это 7) и нажмите Next. Скачать шаблон Наконец, на последнем шаге выбираем метод набора (Есть автоматический - Auto-Dial, ручной - Manual и предиктивный - Predictive) и транк, который создавали ранее. Чтобы загруженные лиды отображались корректно на русском, нужно зайти в mysql и для базы asterisk дать команду set names utf8; Итак, наша компания обзвона готова к использованию, дело за малым. В первую очередь, нужно зарегистрировать на нашем сервере какую-нибудь конечную точку, например –софтфон Zoiper. В SIP Credentials нужно всего лишь ввести адрес нашего сервера, номер и пароль: После чего, заходим в интерфейс соответствующего агента (в нашем случае agent005, так как его номер - 8005) и выбираем ранее созданную компанию. Как только мы авторизовались, на наш софтфон поступит входящий звонок, необходимо его принять и не класть трубку, пока не закончится обзвон. Однако, на данном этапе звонки из компании обзвона поступать ещё не будут, так как наш агент стоит на холде. Чтобы начать обзвон – нужно нажать Resume Можно также выбрать Manual Dial, набрать номер абонента вручную и нажать Dial Now. После того, как разговор будет завершён можно указать результат звонка:
img
Утилита Linux fsck (File System Consistency Check - проверка согласованности файловой системы) проверяет файловые системы на наличие ошибок или нерешенных проблем. Инструмент используется для исправления потенциальных ошибок и создания отчетов. Эта утилита по умолчанию входит в состав дистрибутивов Linux. Для использования fsck не требуется никаких специальных шагов или процедуры установки. После загрузки терминала вы готовы использовать функции инструмента. Следуйте этому руководству, чтобы узнать, как использовать fsck для проверки и восстановления файловой системы на Linux-машине. В руководстве будут перечислены примеры того, как использовать инструмент и для каких вариантов использования. Когда использовать fsck в Linux Инструмент fsck можно использовать в различных ситуациях: Используйте fsck для запуска проверки файловой системы в качестве профилактического обслуживания или при возникновении проблемы с вашей системой. Одна из распространенных проблем, которые может диагностировать fsck, - это когда система не загружается. Другой - когда вы получаете ошибку ввода/вывода, когда файлы в вашей системе становятся поврежденными. Вы также можете использовать утилиту fsck для проверки состояния внешних накопителей, таких как SD-карты или USB-накопители. Базовый синтаксис fsck Базовый синтаксис утилиты fsck следует этому шаблону: fsck <options> <filesystem> В приведенном выше примере файловой системой может быть устройство, раздел, точка монтирования и так далее. Вы также можете использовать параметры, относящиеся к файловой системе, в конце команды. Как проверить и восстановить файловую систему Перед проверкой и восстановлением файловой системы необходимо выполнить несколько шагов. Вам нужно найти устройство и размонтировать его. Просмотр подключенных дисков и разделов Чтобы просмотреть все подключенные устройства в вашей системе и проверить расположение диска, используйте один из доступных инструментов в Linux. Один из способов найти диск, который вы хотите просканировать, - это перечислить диски файловой системы с помощью команды df: df -h Инструмент показывает использование данных в вашей системе и файловых системах. Обратите внимание на диск, который вы хотите проверить, с помощью команды fsck. Например, для просмотра разделов вашего первого диска используйте следующую команду: sudo parted /dev/sda 'print' sda - это то, как Linux относится к вашему первому SCSI-диску. Если у вас два, вторым будет sdb и так далее. В нашем примере мы получили один результат, поскольку на этой виртуальной машине был только один раздел. Вы получите больше результатов, если у вас будет больше разделов. Имя диска здесь /dev/sda, а затем количество разделов отображается в столбце Number. В нашем случае это один: sda1. Размонтировать диск Прежде чем вы сможете запустить проверку диска с помощью fsck, вам необходимо отключить диск или раздел. Если вы попытаетесь запустить fsck на смонтированном диске или разделе, вы получите предупреждение: Обязательно выполните команду размонтирования: sudo umount /dev/sdb Замените /dev/sdb устройством, которое вы хотите размонтировать. Обратите внимание, что вы не можете размонтировать корневые файловые системы. Следовательно, теперь fsck нельзя использовать на работающей машине. Подробнее об этом в конце руководства. Запустить fsck для проверки ошибок Теперь, когда вы отключили диск, вы можете запустить fsck. Чтобы проверить второй диск, введите: sudo fsck /dev/sdb В приведенном выше примере показан результат для чистого диска. Если на вашем диске имеется несколько проблем, для каждой из них появляется запрос, в котором вы должны подтвердить действие. Код выхода, который возвращает утилита fsck, представляет собой сумму этих состояний: Смонтировать диск Когда вы закончите проверку и ремонт устройства, смонтируйте диск, чтобы вы могли использовать его снова. В нашем случае мы перемонтируем SDB-диск: mount /dev/sdb Сделать пробный запуск с fsck Перед выполнением проверки в реальном времени вы можете выполнить тестовый запуск с помощью fsck. Передайте параметр -N команде fsck, чтобы выполнить тест: sudo fsck -N /dev/sdb На выходе печатается, что могло бы произойти, но не выполняется никаких действий. Автоматическое исправление обнаруженных ошибок с помощью fsck Чтобы попытаться устранить потенциальные проблемы без каких-либо запросов, передайте параметр -y команде fsck. sudo fsck -y / dev / sdb Таким образом, вы говорите «да, попытайтесь исправить все обнаруженные ошибки» без необходимости каждый раз получать запрос. Если ошибок не обнаружено, результат будет таким же, как и без опции -y. Пропускать восстановление, но выводить ошибки fsck на выходе Используйте параметр -n, если вы хотите проверить потенциальные ошибки в файловой системе, не исправляя их. У нас есть второй диск sdb с некоторыми ошибками журнала. Флаг -n печатает ошибку, не исправляя ее: sudo fsck -n /dev/sdb Заставить fsck выполнить проверку файловой системы Когда вы выполняете fsck на чистом устройстве, инструмент пропускает проверку файловой системы. Если вы хотите принудительно проверить файловую систему, используйте параметр -f.Например: sudo fsck -f /dev/sdb При сканировании будут выполнены все пять проверок для поиска повреждений, даже если будет обнаружено, что проблем нет. Запустить fsck сразу для всех файловых систем Если вы хотите выполнить проверку всех файловых систем с помощью fsck за один раз, передайте флаг -A. Эта опция будет проходить через файл etc/fstab за один проход. Поскольку корневые файловые системы нельзя размонтировать на работающей машине, добавьте параметр -R, чтобы пропустить их: fsck -AR Чтобы избежать запросов, добавьте параметр -y, о котором мы говорили. Пропустить проверку fsck в определенной файловой системе Если вы хотите, чтобы fsck пропустил проверку файловой системы, вам нужно добавить -t и no перед файловой системой. Например, чтобы пропустить файловую систему ext3, выполните эту команду: sudo fsck -AR -t noext3 -y Мы добавили -y, чтобы пропускать запросы. Пропустить Fsck в подключенных файловых системах Чтобы убедиться, что вы не пытаетесь запустить fsck на смонтированной файловой системе, добавьте параметр -M. Этот флаг указывает инструменту fsck пропускать любые смонтированные файловые системы. Чтобы показать вам разницу, мы запустим fsck на sdb, пока он смонтирован, а затем, когда мы его размонтируем. sudo fsck -M /dev/sdb Пока sdb смонтирован, инструмент выходит без проверки. Затем мы размонтируем sdb и снова запускаем ту же команду. На этот раз fsck проверяет диск и сообщает, что он чистый или с ошибками. Примечание. Чтобы удалить первую строку заголовка инструмента fsck «fsck from util-linux 2.31.1», используйте параметр -T. Запустить fsck в корневом разделе Linux Как мы уже упоминали, fsck не может проверить корневые разделы на работающей машине, поскольку они смонтированы и используются. Однако даже корневые разделы Linux можно проверить, если вы загрузитесь в режиме восстановления и запустите проверку fsck: 1. Для этого включите или перезагрузите компьютер через графический интерфейс или с помощью терминала: sudo reboot 2. Нажмите и удерживайте клавишу Shift во время загрузки. Появится меню GNU GRUB. 3. Выберите Advanced options for Ubuntu (Дополнительные параметры для Ubuntu). 4. Затем выберите запись с (recovery mode - режим восстановления) в конце. Подождите, пока система загрузится в меню восстановления. 5. Выберите fsck в меню. 6. Подтвердите, выбрав Yes в ответ на запрос. 7. По завершении выберите resume в меню восстановления, чтобы загрузить машину. Что делать, если fsck прерывается? Вам не следует прерывать работу инструмента fsck, пока он работает. Однако, если процесс будет прерван, fsck завершит текущую проверку, а затем остановится. Если утилита обнаружила ошибку во время проверки, она не будет пытаться что-либо исправить, если ее прервать. Вы можете повторно запустить проверку в следующий раз и дождаться ее завершения. Обзор параметров команды Linux fsck Подводя итоги, ниже приведен список параметров, которые вы можете использовать с утилитой fsck Linux. -а - Попробует автоматически исправить ошибки файловой системы. Подсказок не будет, поэтому используйте его с осторожностью. -А - Проверяет все файловые системы, перечисленные в /etc/fstab. -C - Показать прогресс для файловых систем ext2 и ext3. -f - Заставляет fsck проверить файловую систему. Инструмент проверяет, даже если файловая система кажется чистой. -l - Заблокирует устройство, чтобы другие программы не могли использовать раздел во время сканирования и восстановления. -M - Не проверяет смонтированные файловые системы. Инструмент возвращает код выхода 0, когда файловая система смонтирована. -N - Делает пробный запуск. В выводе печатается, что fsck будет делать без выполнения каких-либо действий. Также печатаются предупреждения или сообщения об ошибках. -П - Используется для параллельного сканирования нескольких файловых систем. Это может вызвать проблемы, в зависимости от ваших настроек. Используйте с осторожностью. -Р - Сообщает инструменту fsck, чтобы он не проверял корневые файловые системы при использовании параметра -A. -р - Распечатать статистику устройства. -t - Укажите типы файловых систем для проверки с помощью fsck. Обратитесь к странице руководства для получения подробной информации. -T - Скрыть заголовок при запуске инструмента. -у - Попытается автоматически исправить ошибки файловой системы во время проверки. -V - Подробный вывод.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59