По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В сегодняшней статье рассмотрим модуль, который позволяет просматривать детальную информацию о сервере IP-АТС Asterisk и о процессах, которые на нем запущены прямо из web-интерфейса FreePBX - Asterisk Info. Все примеры в данной статье будут приводиться с использованием FreePBX 13. Ту же самую информацию можно получить, используя командную строку Asterisk – CLI (Command Line Interface). Сразу отметим, что данная информация будет понятна и полезна только продвинутым пользователям Asterisk и системным администраторам, например, при траблшутинге проблем. Модуль Asterisk Info Перейдём в модуль и рассмотрим его функционал. Модуль доступен по следующему пути с главной страницы Reports -> Asterisk Info Как только мы переходим в модуль, перед нами открывается страница Summary. Здесь находится следующая информация: Uptime – Показывает как долго сервер работает без отключения и рестарта Reload - Показывает, когда последний раз была выполнена перезагрузка сервера. Перезагрузка происходит после нажатия на кнопку Apply Config, которая появляется после внесения изменений в конфигурацию через вэб-интерфейс Active SIP Channels -Показывает, как много на сервере активных SIP каналов. Не надо путать с активными звонками. Active IAX2 Channels – Показывает количество активных IAX2 каналов SIP Registry - Показывает количество SIP транков, которые зарегистрированы на сервере IAX2 Registry - Показывает количество IAX2 транков, которые зарегистрированы на сервере SIP Peers - Показывает количество зарегистрированных SIP пиров. Пир – это внутренний номер (Extension) или транк (Trunk) IAX2 Peers - Показывает количество зарегистрированных IAX2 пиров. Справа можно выбрать другой тип отчета. Registries Данный отчет показывает каждое соединение, на которое зарегистрирован сервер Asterisk. Обычно здесь находится информация о транках. Этот отчёт показывает, на что зарегистрирован сервер, но не что зарегистрировано на нем, эту информацию следует искать во вкладке Peers. Channels Здесь выводится информация о каждом активном канале на сервере. Канал – это одно двустороннее соединение между двумя устройствами. Peers Здесь выводится информация о каждом устройстве, транке, внутреннем номере, которое зарегистрировано на сервере Asterisk. SIP Info Данный отчёт суммирует предыдущие два Registry и Peers, но выводит информацию только по SIP. IAX Info Данный отчёт суммирует Registry и Peers, но выводит информацию только по IAX2. Conferences Report Данный отчёт показывает информацию о любых активных конференциях на сервере. Subscription Report Показывает список всех подсказок (hints), которые созданы на сервере. Подсказка это то, на что подписана BLF кнопка на телефоне. Voicemail Users Report Показывает информацию о голосовой почте пользователей. Например, как много новых сообщений поступило. Queues Показывает информацию по очередям. Например, сколько сейчас звонков находится в очереди. Full Report Показывает информацию из всех предыдущих вкладок в одном окне.
img
Всем привет! Сегодня в статье рассмотрим установку CentOS 7 Minimal, первичную настройку сети и установку графического интерфейса под названием Mate. У нас уже есть статья и видео об установке немного иной редакции CentOS 7 – Network Edition, но при установке Minimal есть несколько тонкостей, о них – ниже. Первое отличие в том, что образ несколько больше - 700 Мб, но это всё равно несравнимо с объемом DVD или Full редакции. Следующее отличие, вытекающее из предыдущего – отсутствует возможность выбрать дополнительный софт для установки (скриншот ниже): В CentOS 7 также добавилась возможность включить сетевой интерфейс непосредственно во время установки – в 6 версии такого не было, однако, я дополнительно продемонстрирую самый наглядный способ настройки сетевого интерфейса в 7 версии. Процесс установки Итак, выполняем все шаги последовательно как указано в нашем видео и статье по установке сетевой версии данной ОС, ждём 15-30 минут и вводим свои логинпароль (предварительно подключившись через терминал). Первым желанием было проверить, работает ли сетевой интерфейс и был ли ему назначен адрес – я ввёл команду ifconfig, и, как оказалось, данная команда на 7 версии является устаревшей и вместо неё необходимо использовать команду ipaddr для вывода информации об интерфейсах и команду iplinkдля вывода статистики на них же. Но так все привыкли к стандартным командам пакета net-tools, его необходимо будет установить с помощью команды yum install net-tools. Однако, помня первое ощущение непонимания, когда у меня не работала сеть в минимальной инсталляции на 6 версии, я хочу дополнительно показать очень простой способ её настройки – об этом ниже. Важно! Команда ifconfig устарела. Для сетевого взаимодействия с сервером рекомендуем пользоваться командой «ip» (ip -a), которая по функциональности (с точки зрения L2 и L3) превосходит «ifconfig». Настройка сетевых интерфейсов с помощью nmtui Вводим команду nmtui - в итоге должен запуститься простой графический интерфейс для настройки сети (скриншот ниже): Я, к примеру, хочу изменить настройки единственного интерфейса – выбираем первую опцию Edit a connection и видим следующую картину: Выбираем Edit… и делаем с интерфейсом всё, что вздумается :) Как видно на скриншоте ниже, наш сервер получил IP - адрес по DHCP – меня это устраивает и я оставлю всё как есть. Главной целью было продемонстрировать данную утилиту – nmtui Установка MATE и необходимых пакетов Итак, почему MATE? Ответ прост – он гораздо легче дефолтного Gnome, очень нетребователен к ресурсам и крайне прост в установке. Итак, производим несколько простых шагов по установке пакетов(ниже): yum groupinstall "Development Tools" - установка необходимого комплекта пакетов для работы GUI (только если уже не установлены) ; yum install epel-release - установка EPEL репозитория; yum groupinstall "X Window system" - установка группового пакета X Window System, это займет около 5 минут. Сам пакет имеет объем 73 Мб; yum groupinstall "MATE Desktop" - установка непосредственно Mate – довольно объемный пакет - 506 Мб; Далее, запускаем GUI! Вводим командуsystemctl isolate graphical.target, вводим имя юзера и пароль, и видим графический интерфейс (скриншот ниже): Если хотите чтобы система по умолчанию запускалась в графическом виде, введите команду systemctl set-default graphical.target rm '/etc/systemd/system/default.target' ln -s '/usr/lib/systemd/system/graphical.target' '/etc/systemd/system/default.target'
img
Современные веб-сайты и приложения генерируют большой трафик и одновременно обслуживают многочисленные запросы клиентов. Балансировка нагрузки помогает удовлетворить эти запросы и обеспечивает быстрый и надежный отклик веб-сайта и приложений. В этой статье вы узнаете, что такое балансировка нагрузки, как она работает и какие существуют различные типы балансировки нагрузки. Что такое балансировка нагрузки? Балансировка нагрузки (Load Balancing) распределяет высокий сетевой трафик между несколькими серверами, позволяя организациям масштабироваться для удовлетворения рабочих нагрузок с высоким трафиком. Балансировка направляет запросы клиентов на доступные серверы, чтобы равномерно распределять рабочую нагрузку и улучшать скорость отклика приложений, тем самым повышая доступность веб-сайта или сервера. Балансировка нагрузки применяется к уровням 4-7 в семиуровневой модели OSI. Возможности балансировки: L4. Направление трафика на основе сетевых данных и протоколов транспортного уровня, например IP-адреса и TCP-порта. L7. Добавляет переключение содержимого в балансировку нагрузки, позволяя принимать решения о маршрутизации в зависимости от таких характеристик, как HTTP-заголовок, унифицированный идентификатор ресурса, идентификатор сеанса SSL и данные HTML-формы. GSLB. Global Server Load Balancing расширяет возможности L4 и L7 на серверы на разных сайтах. Почему важна балансировка нагрузки? Балансировка нагрузки необходима для поддержания информационного потока между сервером и пользовательскими устройствами, используемыми для доступа к веб-сайту (например, компьютерами, планшетами, смартфонами). Есть несколько преимуществ балансировки нагрузки: Надежность. Веб-сайт или приложение должны обеспечивать хороший UX даже при высоком трафике. Балансировщики нагрузки обрабатывают пики трафика, эффективно перемещая данные, оптимизируя использование ресурсов доставки приложений и предотвращая перегрузки сервера. Таким образом, производительность сайта остается высокой, а пользователи остаются довольными. Доступность. Балансировка нагрузки важна, поскольку она включает периодические проверки работоспособности между балансировщиком нагрузки и хост-машинами, чтобы гарантировать, что они получают запросы. Если одна из хост-машин не работает, балансировщик нагрузки перенаправляет запрос на другие доступные устройства. Балансировщики нагрузки также удаляют неисправные серверы из пула, пока проблема не будет решена. Некоторые подсистемы балансировки нагрузки даже создают новые виртуализированные серверы приложений для удовлетворения возросшего количества запросов. Безопасность. Балансировка нагрузки становится требованием для большинства современных приложений, особенно с добавлением функций безопасности по мере развития облачных вычислений. Функция разгрузки балансировщика нагрузки защищает от DDoS-атак, перекладывая трафик атак на общедоступного облачного провайдера, а не на корпоративный сервер. Прогнозирование. Балансировка нагрузки включает аналитику, которая может предсказать узкие места трафика и позволить организациям их предотвратить. Прогнозные аналитические данные способствуют автоматизации и помогают организациям принимать решения на будущее. Как работает балансировка нагрузки? Балансировщики нагрузки находятся между серверами приложений и пользователями в Интернете. Как только балансировщик нагрузки получает запрос, он определяет, какой сервер в пуле доступен, а затем направляет запрос на этот сервер. Направляя запросы на доступные серверы или серверы с более низкой рабочей нагрузкой, балансировка нагрузки снимает нагрузку с загруженных серверов и обеспечивает высокую доступность и надежность. Балансировщики нагрузки динамически добавляют или отключают серверы в случае высокого или низкого спроса. Таким образом, обеспечивается гибкость. Балансировка нагрузки также обеспечивает аварийное переключение в дополнение к повышению производительности. Балансировщик нагрузки перенаправляет рабочую нагрузку с отказавшего сервера на резервный, уменьшая воздействие на конечных пользователей. Типы балансировки нагрузки Балансировщики нагрузки различаются по типу хранилища, сложности и функциональности балансировщика. Ниже описаны различные типы балансировщиков нагрузки. Аппаратное обеспечение (Hardware-Based) Аппаратный балансировщик нагрузки - это специализированное оборудование с установленным проприетарным программным обеспечением. Он может обрабатывать большие объемы трафика от различных типов приложений. Аппаратные балансировщики нагрузки содержат встроенные возможности виртуализации, которые позволяют использовать несколько экземпляров виртуального балансировщика нагрузки на одном устройстве. Программное обеспечение (Software-Based) Программный балансировщик нагрузки работает на виртуальных машинах или серверах белого ящика, как правило, в составе ADC (application delivery controllers - контроллеры доставки приложений). Виртуальная балансировка нагрузки обеспечивает превосходную гибкость по сравнению с физической. Программные балансировщики нагрузки работают на обычных гипервизорах, контейнерах или как процессы Linux с незначительными накладными расходами на bare metal сервере. Виртуальный (Virtual) Виртуальный балансировщик нагрузки развертывает проприетарное программное обеспечение для балансировки нагрузки с выделенного устройства на виртуальной машине для объединения двух вышеупомянутых типов. Однако виртуальные балансировщики нагрузки не могут решить архитектурные проблемы ограниченной масштабируемости и автоматизации. Облачный (Cloud-Based) Облачная балансировка нагрузки использует облачную инфраструктуру. Вот некоторые примеры облачной балансировки нагрузки: Балансировка сетевой нагрузки. Балансировка сетевой нагрузки основана на уровне 4 и использует информацию сетевого уровня, чтобы определить, куда отправлять сетевой трафик. Это самое быстрое решение для балансировки нагрузки, но ему не хватает балансировки распределения трафика между серверами. Балансировка нагрузки HTTP(S). Балансировка нагрузки HTTP(S) основана на уровне 7. Это один из наиболее гибких типов балансировки нагрузки, позволяющий администраторам принимать решения о распределении трафика на основе любой информации, поступающей с адресом HTTP. Внутренняя балансировка нагрузки. Внутренняя балансировка нагрузки почти идентична балансировке сетевой нагрузки, за исключением того, что она может балансировать распределение во внутренней инфраструктуре. Алгоритмы балансировки нагрузки Различные алгоритмы балансировки нагрузки предлагают разные преимущества и сложность в зависимости от варианта использования. Наиболее распространенные алгоритмы балансировки нагрузки: Round Robin (По-круговой) Последовательно распределяет запросы на первый доступный сервер и по завершении перемещает этот сервер в конец очереди. Алгоритм Round Robin используется для пулов равных серверов, но он не учитывает нагрузку, уже имеющуюся на сервере. Least Connections (Наименьшее количество подключений) Алгоритм наименьшего количества подключений предполагает отправку нового запроса наименее загруженному серверу. Метод наименьшего соединения используется, когда в пуле серверов много неравномерно распределенных постоянных соединений. Least Response Time (Наименьшее время отклика) Балансировка нагрузки с наименьшим временем отклика распределяет запросы на сервер с наименьшим количеством активных подключений и с самым быстрым средним временем отклика на запрос мониторинга работоспособности. Скорость отклика показывает, насколько загружен сервер. Hash (Хеш) Алгоритм хеширования определяет, куда распределять запросы, на основе назначенного ключа, такого как IP-адрес клиента, номер порта или URL-адрес запроса. Метод Hash используется для приложений, которые полагаются на сохраненную информацию о пользователях, например, тележки на веб-сайтах интернет магазинов. Custom Load (Пользовательская нагрузка) Алгоритм Custom Load направляет запросы к отдельным серверам через SNMP (Simple Network Management Protocol). Администратор определяет нагрузку на сервер, которую балансировщик нагрузки должен учитывать при маршрутизации запроса (например, использование ЦП и памяти, а также время ответа). Заключение Теперь вы знаете, что такое балансировка нагрузки, как она повышает производительность и безопасность сервера и улучшает взаимодействие с пользователем. Различные алгоритмы и типы балансировки нагрузки подходят для разных ситуаций и вариантов использования, и вы должны иметь возможность выбрать правильный тип балансировщика нагрузки для своего варианта использования.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59