По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы продолжим рассмотрение вопроса об устранении неполадок в объявлениях о маршрутах BGP. Все маршрутизаторы будут иметь рабочие соседние узлы BGP. Рекомендуем также почитать первую часть статьи по траблшутингу протокола BGP. Видео: Основы BGP за 7 минут Урок 1 Новый сценарий. R1 и R2 находятся в разных автономных системах. Мы пытаемся объявить сеть 1.1.1.0 / 24 от R1 до R2, но она не отображается на R2. Вот конфигурации: На первый взгляд, здесь все в порядке. Однако R2 не узнал никаких префиксов от R1 Может быть, используется distribute-list. Но нет, это не тот случай. Это означает, что нам придется проверять наши все команды network. Проблема заключается в команде network. Она настраивается по-разному для BGP и нашего IGP. Если мы применяем команду network для BGP, она должна быть полной. В этом случае забыли добавить маску подсети R1(config)#router bgp 1 R1(config-router)#network 1.1.1.0 mask 255.255.255.0 Мы должны убедиться, что ввели правильную маску подсети. Итак, видно, что мы узнали префикс, и R2 устанавливает его в таблицу маршрутизации ... проблема решена! Итог урока: введите правильную маску подсети ... BGP требователен! Урок 2 Давайте перейдем к следующей проблеме. Системный администратор из AS1 хочет объявить summary в AS 2. Системный администратор из AS 2 жалуется, однако, что он ничего не получает..., давайте, выясним, что происходит не так! Вот конфигурация. Вы можете увидеть команду aggregate-address на R1 для сети 172.16.0.0 / 16. Жаль ... префиксы не были получены R2. Здесь мы можем проверить две вещи: Проверьте, не блокирует ли distribute-list префиксы, как это мы сделали в предыдущем занятии. Посмотрите, что R1 имеет в своей таблице маршрутизации (Правило: "не могу объявлять то, чего у меня нет!"). Давайте начнем с таблицы маршрутизации R1. Из предыдущих уроков вы знаете, как выглядит distribute-list. Здесь нет ничего, что выглядело бы даже близко к 172.16.0.0 /16. Если мы хотим объявить summary, мы должны сначала поместить что-то в таблицу маршрутизации R1. Рассмотрим различные варианты: R1(config)#interface loopback 0 R1(config-if)#ip address 172.16.0.1 255.255.255.0 R1(config-if)#exit R1(config)#router bgp 1 R1(config-router)#network 172.16.0.0 mask 255.255.255.0 Это вариант 1. Создам интерфейс loopback0 и настроим IP-адрес, который попадает в диапазон команды aggregate-address. Теперь мы видим summary в таблице маршрутизации R2. По умолчанию он все равно будет объявлять другие префиксы. Если вы не хотите этого, вам нужно использовать команду aggregate-address summaryonly! Второй вариант объявления summary: R1(config)#ip route 172.16.0.0 255.255.0.0 null 0 R1(config)#router bgp 1 R1(config-router)#network 172.16.0.0 mask 255.255.0.0 Сначала мы поместим сеть 172.16.0.0 / 16 в таблицу маршрутизации, создав статический маршрут и указав его на интерфейсе null0. Во-вторых, будем использовать команду network для BGP для объявления этой сети. Итог урока: Вы не можете объявлять то, чего у вас нет. Создайте статический маршрут и укажите его на интерфейсе null0, чтобы создать loopback интерфейс с префиксом, который попадает в диапазон суммарных адресов. Урок 3 Следующая проблема. Вы работаете системным администратором в AS 1, и однажды получаете телефонный звонок от системного администратора AS 2, который интересуется у вас, почему вы публикуете сводку для 1.0.0.0 / 8. Вы понятия не имеете, о чем, он говорит, поэтому решаете проверить свой роутер. Это то, что видит системный администратор на R2. Мы видим, что у нас есть сеть 1.0.0.0 / 8 в таблице BGP на R1. Давайте проверим его таблицу маршрутизации. Сеть 1.1.1.0 / 24 настроена на loopback интерфейс, но она находится в таблице BGP как 1.0.0.0 / 8. Это может означать только одну вещь ... суммирование. Беглый взгляд на выводы команды show ip protocols показывает, что автоматическое суммирование включено. Отключим это: R1(config)#router bgp 1 R1(config-router)#no auto-summary Мы отключим его на R1. Теперь мы видим 1.1.1.0 / 24 на R2 ... проблема решена! Итог урока: если вы видите classful сети в своей таблице BGP, возможно, вы включили автоматическое суммирование. Некоторые из проблем, которые были рассмотрены, можно легко решить, просто посмотрев и/или сравнив результаты команды "show run". И это правда, но имейте в виду, что у вас не всегда есть доступ ко ВСЕМ маршрутизаторам в сети, поэтому, возможно, нет способа сравнить конфигурации. Между устройствами, на которых вы пытаетесь устранить неисправности или которые вызывают проблемы, может быть коммутатор или другой маршрутизатор. Использование соответствующих команд show и debug покажет вам, что именно делает ваш маршрутизатор и что он сообщает другим маршрутизаторам. Урок 4 Та же топология, другая проблема. Персонал из AS 2 жалуются, что они ничего не получают от AS 1. Для усложнения проблемы, конфигурация не будет показана. Для начала, мы видим, что R2 не получает никаких префиксов. Так же можем убедиться, что R1 не имеет каких-либо distribute-lists. Мы видим, что R1 действительно имеет сеть 1.1.1.0 /24 в своей таблице маршрутизации, так почему же он не объявляет ее в R2? Давайте посмотрим, может на R1 есть какие-то особенные настройки для своего соседа R2: Будем использовать команду show ip bgp neighbors, чтобы увидеть подробную информацию о R2. Мы видим, что route-map была применена к R2 и называется "NEIGHBORS". Имейте в виду, что помимо distribute-lists мы можем использовать также route-map для фильтрации BGP. Существует только оператор соответствия для prefix-list "PREFIXES". Вот наш нарушитель спокойствия ... он запрещает сеть 1.1.1.0 / 24! R1(config)#router bgp 1 R1(config-router)#no neighbor 192.168.12.2 route-map NEIGHBORS out Удалим route-map И наконец R2 узнал об этом префиксе ... проблема решена! Итог урока: убедитесь, что нет route-map, блокирующих объявление префиксов. BGP иногда может быть очень медленным, особенно когда вы ждете результатов, когда вы работаете на тестовом или лабораторном оборудовании. "Clear ip bgp *" - это хороший способ ускорить его ... просто не делайте этого на маршрутизаторах в производственной сети) Урок 5 Наконец, третий участник выходит на арену, чтобы продемонстрировать новую проблему. R1-это объявляемая сеть 1.1.1.0 / 24, но R3 не изучает эту сеть. Здесь представлены конфигураций: Соседство настроено, R1 - объявляемая сеть 1.1.1.0 / 24. R3#show ip route bgp Мы можем видеть сеть 1.1.1.0 / 24 в таблице маршрутизации R2, но она не отображается на R3. Технически проблем нет. Если вы внимательно посмотрите на конфигурацию BGP всех трех маршрутизаторов, то увидите, что существует только соседство BGP между R1 и R2 и между R2 и R3. Из-за split horizon IBGP R2 не пересылает сеть 1.1.1.0 / 24 в направлении R3. Чтобы это исправить, нам нужно настроить R1 и R3, чтобы они стали соседями. R1(config)#ip route 192.168.23.3 255.255.255.255 192.168.12.2 R3(config)#ip route 192.168.12.1 255.255.255.255 192.168.23.2 Если мы собираемся настроить соседство BGP между R1 и R3, нам нужно убедиться, что они могут достигать друг друга. Мы можем использовать статическую маршрутизацию или IGP ... чтобы упростить задачу, на этот раз мы будем использовать статический маршрут. R1(config)#router bgp 1 R1(config-router)#neighbor 192.168.23.3 remote-as 1 R3(config)#router bgp 1 R3(config-router)#neighbor 192.168.12.1 remote-as 1 Примените правильные настройки команды neighbor BGP. И R3 имеет доступ к сети 1.1.1.0 / 24! Итог урока: соседство по IBGP должно быть полным циклом! Другим решением было бы использование route-reflector или confederation. Урок 6 Очередная проблема. R3 является объявляемой сетью 3.3.3.0 / 24 через EBGP, а R2 устанавливает ее в таблицу маршрутизации. R1, однако, не имеет этой сети в своей таблице маршрутизации. Вот конфигурации: Вот конфигурации. Для простоты мы используем IP-адреса физического интерфейса для настройки соседей BGP. Мы можем проверить, что сеть 3.3.3.0 / 24 находится в таблице маршрутизации R2. R1#show ip route bgp Однако в таблице маршрутизации R1 ничего нет. Первое, что мы должны проверить - это таблицу BGP. Мы видим, что он находится в таблице BGP, и * указывает, что это допустимый маршрут. Однако мы не видим символа >, который указывает лучший путь. По какой-то причине BGP не может установить эту запись в таблице маршрутизации. Внимательно посмотрите на следующий IP-адрес прыжка (192.168.23.3). Доступен ли этот IP-адрес? R1 понятия не имеет, как достичь 192.168.23.3, поэтому наш следующий прыжок недостижим. Есть два способа, как мы можем справиться с этой проблемой: Используйте статический маршрут или IGP, чтобы сделать этот next hop IP-адрес доступным. Измените next hop IP-адрес. Мы изменим IP-адрес следующего прыжка, так как мы достаточно изучили применение статических маршрутов и IGPs. R2(config)#router bgp 1 R2(config-router)#neighbor 192.168.12.1 next-hop-self Эта команда изменит IP-адрес следующего перехода на IP-адрес R2. Теперь мы видим символ >, который указывает, что этот путь был выбран как лучший. IP-адрес следующего перехода теперь 192.168.12.2. Ура! Теперь он есть в таблице маршрутизации. Мы уже закончили? Если наша цель состояла в том, чтобы она отобразилась в таблице маршрутизации, то мы закончили...однако есть еще одна проблема. Наш пинг не удался. R1 и R2 оба имеют сеть 3.3.3.0 / 24 в своей таблице маршрутизации, поэтому мы знаем, что они знают, куда пересылать IP-пакеты. Давайте взглянем на R3: R3 получит IP-пакет с пунктом назначения 3.3.3.3 и источником 192.168.12.1. Из таблицы маршрутизации видно, что она не знает, куда отправлять IP-пакеты, предназначенные для 192.168.12.1. Исправим это: R2(config)#router bgp 1 R2(config-router)#network 192.168.12.0 mask 255.255.255.0 Мы будем объявлять сеть 192.168.12.0 / 24 на R2. Теперь R3 знает, куда отправлять трафик для 192.168.12.0 / 24. Проблема устранена! Итог урока: убедитесь, что IP-адрес следующего перехода доступен, чтобы маршруты могли быть установлены в таблице маршрутизации, и чтобы все необходимые сети были достижимы.
img
Устройства третьего уровня модели OSI обеспечивают так называемую трансляцию сетевых адресов, или Network Address Translation (NAT). Устройства третьего уровня, как правило, маршрутизаторы, фаерволы или коммутаторы с функциями L3, преобразуют внутренние IP-адреса во внешние, которые маршрутизируются в сети интернет. В рамках преобразования IP-адреса, фаервол сохраняет внутренний адрес себе в память, затем подменяет его на адрес внешнего интерфейса, либо меняет его на один из адресов внешнего диапазона (пула), и совершает отправку измененного IP-пакета. Трансляция портов В современных корпоративных сетях, фаерволы выполняют функцию, которая называется Port Address Translation (PAT). Эта технология позволяет множеству внутренних IP – адресов использовать один и тот же внешний адрес. Данная технология реализуется на четвертом уровне модели OSI. Схема работы PAT показана ниже: На схеме, компьютеры (рабочие станции) находятся в защищенном участке сети за «фаерволом». Этот участок обозначен как внутренняя сеть, где действует адресация 192.168.0.0 с маской подсети 255.255.255.0. Как было сказано в начале главы, Cisco Adaptive Security Appliances (ASA) выполняет функции по трансляции портов для устройств внутренней сети. Трансляция выполняется для «хостов» подсети 192.168.0.X в во внешний IP-адрес Cisco ASA – 208.104.33.225. В данном примере, компьютер А отправляет TCP пакет с портом назначения 80, получателем которого является WEB – сервер, расположенный во внешнем сегменте сети на компьютере Б. ASA подменяет оригинальный запрос с IP-адреса 192.168.0.44 на свой собственный (208.104.33.225). Параллельно, случайно выбирается номер порта, отличного от исходного (в данном примере порт 1024 заменен на 1188). Только после этого, пакеты отправляются на WEB – сервер к адресу назначения 208.104.33.241. Система обнаружения и предотвращения вторжений Система обнаружения вторжений Intrusion Detection System (IDS), это устройства, которые предназначены для обнаружения атак на корпоративную сеть и поддержания ИТ безопасности в целом. Системы обнаружения позволяют отслеживать распределенные DDoS атаки, «черви» и «трояны». Как показано выше, злоумышленник отправляет «зараженный» пакет на WEB – сервера компании с целью, например, вывести из строя сайт компании. Система обнаружения вторжения (IDS) отслеживает данный пакет, и отправляет сигнал тревоги на систему мониторинга. Недостатком данного механизма является то, что он лишь уведомляет о наличии угрозы, но не предотвращает ее. В данном случае, отправленный злоумышленником пакет дойдет до получателя. Система предотвращения вторжений, или Intrusion Prevention System (IPS) , способна не только обнаружить «зараженный» пакет, но и уничтожить его. Схема работы IPS показана на рисунке ниже: Как видно из рисунка, система IPS предотвращает попадание «зараженного» пакета в сегмент корпоративной сети. IPS/IDS системы определяют «зараженный» трафик по следующим критериям: Проверка на базе подписи; Общая политика безопасности; Проверка на базе нелинейности поведения; Проверка на основании репутации. О критериях определения "плохого" трафика мы расскажем в следующих статьях.
img
В одной из вышедших ранее статей мы знакомились с инструментарием Hadoop и рассматривали процедуру развертывания кластера на базе хадуп. Сегодня мы рассмотрим сценарии использования Hadoop, иными словами зачем он нужен и в чем его польза. Вспомним, что же такое Hadoop? Hadoop, если говорить простым языком это набор программных решений, позволяющих осуществлять работу с так называемыми "большими данными". Большие данные, в данном контексте это гигантские объемы данных (не обязательно имеющих структуру), которые наиболее эффективно обрабатываются горизонтально масштабируемыми программами. Такие программные решения позволяют разбивать большие объемы данных на части и использовать для работы с этими элементами множество отдельных аппаратных машин, выполняющих обработку данных параллельно. Собственно, одним из таких программных решений и является Hadoop. Благодаря широкому набору элементов для конфигурирования, Hadoop имеет очень большую гибкость, то есть этот инструмент можно настроить под множество различных задач. Стоит, однако, отметить, что наибольшую эффективность при обработке данных Hadoop имеет в сочетании с другими программными решениями (как пример можно привести SAP HANA) Разберем наиболее часто используемые сценарии работы Hadoop. Можно использовать эту технологию в качестве базы данных, хранилища данных, инструмента обработки и анализа данных. В качестве хранилища данных Hadoop привлекает тем, что может хранить разнородные данные из множества источников, без ограничения на типы анализа. Конкретные сценарии использования в данном случае будут таковы: Хранение больших объемов документов: Конкретный пример поликлиники. Медицинские данные населения вполне можно считать большими данными, поскольку они должны храниться долгое время и со временем эта информация пополняется. С учетом перехода системы здравоохранения на электронный документооборот, Hadoop будет являться очень эффективным решением. Архивы журналов электронной почты: С учетом законодательства, хранение переписки по электронной почте с последующим анализом требует эффективных решений для реализации. И здесь опять-таки Hadoop является одним из лучших вариантов. Справочные данные: В различных отраслях человеческой деятельности для изучения используется метод сбора данных и их анализа. Например, метеостанции собирают данные о погоде, затем отправляют их в единый центр, после чего данные анализируются и составляется полная картина для отдельного региона или для всей планеты. Hadoop, в данном случае, будет эффективен, если точек сбора данных достаточно много, и поступающие данные регулярны. Решение Hadoop позволяет довольно быстро собрать данные и длительное время хранить их на серверах для дальнейшего анализа. Социальные сети: Размещение больших данных в хранилищах Hadoop позволяет осуществить к ним быстрый доступ идеальное решение для социальных сетей. Непрерывный сбор данных в режиме реального времени: Информация, поступающая с датчиков, сенсоров, камер видеонаблюдения и т.п. имеет огромное значение для любого современного технически ориентированного предприятия. Хранилища Hadoop эффективны и для данного сценария использования. Также Hadoop может использоваться чисто как база данных для сторонних программных решений. В этом случае сценарии использования могут быть такими: Извлечение и адаптация данных из других систем: В данном случае, благодаря гибкости, Hadoop может отбирать необходимые данные и интегрировать их в свои базы, для дальнейшей обработки и анализа База данных для больших объемов информации в реальном времени: Эта возможность имеет серьезное значение для социальных сетей, где важно сохранять различные выборки данных Предоставление доступа к Hadoop другим системам: Hadoop может эффективно интегрироваться в качестве базы данных в другие программные решения. В виде инструмента обработки и анализа данных Hadoop так же проявляет себя очень эффективно. Анализ рисков предприятия: Благодаря собранным данным и параллельной обработке, программа позволяет быстро просчитать риски и выявить слабые места в деятельности организации Оперативное обновление данных: Hadoop позволяет вносить дополнительную информацию в имеющиеся данные, что позволяет устранить проблемы с нехваткой нужной информации. Быстрое выявление различий в больших объемах схожих данных: Здесь в качестве примера можно привести сравнение расшифровок генетического кода. Использование Hadoop в разы ускоряет этот процесс. Таким образом, можно сказать, что на текущий момент дистрибутивы Hadoop пожалуй, самый эффективный набор инструментов для обработки больших данных. А благодаря непрерывной работе над улучшением инструментария, в ближайшее время вряд ли появится что-то более эффективное.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59