По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Существует большое количество методов аутентификации клиентов беспроводных сетей при подключении. Эти методы появлялись по мере развития различных беспроводных технологий и беспроводного оборудования. Они развивались по мере выявления слабых мест в системе безопасности. В этой статье рассматриваются наиболее распространенные методы проверки подлинности. Открытая аутентификация Стандарт 802.11 предлагал только два варианта аутентификации клиента: open authentication и WEP. Open authentication-предполагает открытый доступ к WLAN. Единственное требование состоит в том, чтобы клиент, прежде чем использовать 802.11, должен отправить запрос аутентификации для дальнейшего подключения к AP (точке доступа). Более никаких других учетных данных не требуется. В каких случаях используется open authentication? На первый взгляд это не безопасно, но это не так. Любой клиент поддерживающий стандарт 802.11 без проблем может аутентифицироваться для доступа к сети. В этом, собственно, и заключается идея open authentication-проверить, что клиент является допустимым устройством стандарта 802.11, аутентифицируя беспроводное оборудование и протокол. Аутентификация личности пользователя проводится другими средствами безопасности. Вы, вероятно, встречали WLAN с open authentication, когда посещали общественные места. В таких сетях в основном аутентификация осуществляется через веб-интерфейс. Клиент подключается к сети сразу же, но предварительно должен открыть веб-браузер, чтобы прочитать и принять условия использования и ввести основные учетные данные. С этого момента для клиента открывается доступ к сети. Большинство клиентских операционных систем выдают предупреждение о том, что ваши данные, передаваемые по сети, не будут защищены. WEP Как вы понимаете, open authentication не шифрует передаваемые данные от клиента к точке доступа. В стандарте 802.11 определен Wired Equivalent Privacy (WEP). Это попытка приблизить беспроводную связь к проводному соединению. Для кодирования данных WEP использует алгоритм шифрования RC4. Данный алгоритм шифрует данные у отправителя и расшифровывает их у получателя. Алгоритм использует строку битов в качестве ключа, обычно называемого WEP- ключом. Один кадр данных-один уникальный ключ шифрования. Расшифровка данных осуществляется только при наличии ключа и у отправителя, и у получателя. WEP- это метод безопасности с общим ключом. Один и тот же ключ должен быть как у отправителя, так и получателя. Этот ключ размещается на устройствах заранее. WEP-ключ также может использоваться в качестве дополнительного метода аутентификации, а также инструмента шифрования. Если клиент отправляет неправильный ключ WEP, он не подключится к точке доступа. Точка доступа проверяет знание клиентом ключа WEP, посылая ему случайную фразу вызова. Клиент шифрует фразу вызова с помощью WEP и возвращает результат точке доступа (АР). АР сравнивает шифрование клиента со своим собственным, чтобы убедиться в идентичности двух ключей WEP. Длина WEP - ключей могут быть длиной 40 или 104 бита, представленные в шестнадцатеричной форме из 10 или 26 цифр. Как правило, более длинные ключи предлагают более уникальные биты для алгоритма, что приводит к более надежному шифрованию. Это утверждение не относится к WEP. Так как WEP был определен в стандарте 802.11 в 1999 году, и соответственно сетевые беспроводные адаптеры производились с использованием шифрования, специфичного для WEP. В 2001 году были выявлены слабые места WEP, и началась работа по поиску более совершенных методов защиты беспроводной связи. К 2004 году поправка 802.11i была ратифицирована, и WEP официально устарел. Шифрование WEP и аутентификация с общим ключом WEP являются слабыми методами защиты WLAN. 802.1x/EAP При наличии только open authentication и WEP, доступных в стандарте 802.11, требовался более безопасный метод аутентификации. Аутентификация клиента обычно включает в себя отправку запроса, получение ответа, а затем решение о предоставлении доступа. Помимо этого, возможен обмен ключами сессии или ключами шифрования в дополнение к другим параметрам, необходимым для клиентского доступа. Каждый метод аутентификации может иметь уникальные требования как уникальный способ передачи информации между клиентом и точкой доступа. Вместо того чтобы встроить дополнительные методы аутентификации в стандарт 802.11, была выбрана более гибкая и масштабируемая структура аутентификации-разработан расширяемый протокол аутентификации (EAP). Как следует из его названия, EAP является расширяемым и не состоит из какого-либо одного метода аутентификации. Вместо этого EAP определяет набор общих функций, которые применяют фактические методы аутентификации, используемые для аутентификации пользователей. EAP имеет еще одно интересное качество: он интегрируется со стандартом управления доступом на основе портов стандарта IEEE 802.1X. Когда порт стандарта 802.1X включен, он ограничивает доступ к сетевому носителю до тех пор, пока клиент не аутентифицируется. Это означает, что беспроводной клиент способен связываться с точкой доступа, но не сможет передавать данные в другую часть сети, пока он успешно не аутентифицируется. Open authentication и WEP аутентификация беспроводных клиентов выполняется локально на точке доступа. В стандарте 802.1 x принцип аутентификации меняется. Клиент использует открытую аутентификацию для связи с точкой доступа, а затем фактический процесс аутентификации клиента происходит на выделенном сервере аутентификации. На рисунке 1 показана трехсторонняя схема стандарта 802.1x, состоящая из следующих объектов: Клиент: клиентское устройство, запрашивающее доступ Аутентификатор: сетевое устройство, обеспечивающее доступ к сети (обычно это контроллер беспроводной локальной сети [WLC]) Сервер аутентификации (AS): устройство, принимающее учетные данные пользователя или клиента и разрешающее или запрещающее доступ к сети на основе пользовательской базы данных и политик (обычно сервер RADIUS) На рисунке клиент подключен к точке доступа через беспроводное соединение. AP представляет собой Аутентификатор. Первичное подключение происходит по стандарту open authentication 802.11. Точка доступа подключена к WLC, который, в свою очередь, подключен к серверу аутентификации (AS). Все в комплексе представляет собой аутентификацию на основе EAP. Контроллер беспроводной локальной сети является посредником в процессе аутентификации клиента, контролируя доступ пользователей с помощью стандарта 802.1x, взаимодействуя с сервером аутентификации с помощью платформы EAP. Далее рассмотрим некоторые вариации протокола защиты EAP LEAP Первые попытки устранить слабые места в протоколе WEP компания Cisco разработала собственный метод беспроводной аутентификации под названием Lightweight EAP (LEAP). Для проверки подлинности клиент должен предоставить учетные данные пользователя и пароля. Сервер проверки подлинности и клиент обмениваются челендж сообщениями, которые затем шифруются и возвращаются. Это обеспечивает взаимную аутентификацию. Аутентификация между клиентом и AS осуществляется только при успешной расшифровке челендж сообщений. На тот момент активно использовалось оборудование, работавшее с WEP- протоколом. Разработчики протокола LEAP пытались устранить слабые места WEP применением динамических, часто меняющихся ключей WEP. Тем не менее, метод, используемый для шифрования челендж сообщений, оказался уязвимым. Это послужило поводом признать протокол LEAP устаревшим. Существуют организации, которые все еще используют данный протокол. Не рекомендуется подключаться к таким сетям. EAP-FAST EAP-FAST (Flexible Authentication by Secure Tunneling) безопасный метод, разработанный компанией Cisco. Учетные данные для проверки подлинности защищаются путем передачи зашифрованных учетных данных доступа (PAC) между AS и клиентом. PAC- это форма общего секрета, который генерируется AS и используется для взаимной аутентификации. EAP-FAST- это метод состоящий из трех последовательных фаз: Фаза 0: PAC создается или подготавливается и устанавливается на клиенте. Фаза 1: после того, как клиент и AS аутентифицировали друг друга обсуждают туннель безопасности транспортного уровня (TLS). Фаза 2: конечный пользователь может быть аутентифицирован через туннель TLS для дополнительной безопасности. Обратите внимание, что в EAP-FAST происходят два отдельных процесса аутентификации-один между AS и клиентом, а другой с конечным пользователем. Они происходят вложенным образом, как внешняя аутентификация (вне туннеля TLS) и внутренняя аутентификация (внутри туннеля TLS). Данный метод, основанный на EAP, требует наличие сервера RADIUS. Данный сервер RADIUS должен работать как сервер EAP-FAST, чтобы генерировать пакеты, по одному на пользователя. PEAP Аналогично EAP-FAST, защищенный метод EAP (PEAP) использует внутреннюю и внешнюю аутентификацию, однако AS предоставляет цифровой сертификат для аутентификации себя с клиентом во внешней аутентификации. Если претендент удовлетворен идентификацией AS, то они строят туннель TLS, который будет использоваться для внутренней аутентификации клиента и обмена ключами шифрования. Цифровой сертификат AS состоит из данных в стандартном формате, идентифицирующих владельца и "подписанных" или подтвержденных третьей стороной. Третья сторона известна как центр сертификации (CA) и известна и доверяет как AS, так и заявителям. Претендент также должен обладать сертификатом CA только для того, чтобы он мог проверить тот, который он получает от AS. Сертификат также используется для передачи открытого ключа на видном месте, который может быть использован для расшифровки сообщений из AS. Обратите внимание, что только AS имеет сертификат для PEAP. Это означает, что клиент может легко подтвердить подлинность AS. Клиент не имеет или не использует свой собственный сертификат, поэтому он должен быть аутентифицирован в туннеле TLS с помощью одного из следующих двух методов: MSCHAPv2; GTC (универсальная маркерная карта): аппаратное устройство, которое генерирует одноразовые пароли для пользователя или вручную сгенерированный пароль; EAP-TLS PEAP использует цифровой сертификат на AS в качестве надежного метода для аутентификации сервера RADIUS. Получить и установить сертификат на одном сервере несложно, но клиентам остается идентифицировать себя другими способами. Безопасность транспортного уровня EAP (EAP-TLS) усиливает защиту, требуя сертификаты на AS и на каждом клиентском устройстве. С помощью EAP-TLS AS и клиент обмениваются сертификатами и могут аутентифицировать друг друга. После этого строится туннель TLS, чтобы можно было безопасно обмениваться материалами ключа шифрования. EAP-TLS считается наиболее безопасным методом беспроводной аутентификации, однако при его реализации возникают сложности. Наряду с AS, каждый беспроводной клиент должен получить и установить сертификат. Установка сертификатов вручную на сотни или тысячи клиентов может оказаться непрактичной. Вместо этого вам нужно будет внедрить инфраструктуру открытых ключей (PKI), которая могла бы безопасно и эффективно предоставлять сертификаты и отзывать их, когда клиент или пользователь больше не будет иметь доступа к сети. Это обычно включает в себя создание собственного центра сертификации или построение доверительных отношений со сторонним центром сертификации, который может предоставлять сертификаты вашим клиентам.
img
Также, как и системы электронной почты, системы VoIP телефонии есть практически у каждой компании. Это могут быть простые облачные АТС, арендуемые у провайдера или собственные выделенные под IP-АТС серверные мощности, но среда, по которой передаётся сигнализация и пользовательский трафик данных систем один – Интернет. Это делает систему VoIP телефонии одной из самых востребованных злоумышленниками целей, ведь получив к ней доступ, открывается масса возможностей для извлечения прибыли или нанесения другого ущерба. Если Вы банально откроете логи своего межсетевого экрана и поищите запросы, поступающие извне, то наверняка увидите, что тысячи сканеров каждую секунду пробуют узнать какие сервисы работают на вашем внешнем адресе. И даже если этот адрес никак не связан с IP-телефонией, то вы всё равно там увидите запросы, связанные с VoIP. Это говорит о том, что злоумышленники очень хотят найти уязвимые системы телефонии и знают как проэксплуатировать выявленную брешь. В этой статье разберём какой профит получают хакеры, взломавшие VoIP систему, основные методы атак и протоколы, на которые они направлены. Чего хотят плохие парни? Как только Ваша систему IP-телефонии будет зарегистрирована в сети VoIP провайдера – вы сможете позвонить в любой уголок мира - на мобильный телефон в Тайване, на такософон в одной из красных будок Лондона и даже на декадно-шаговую АТС в музее Франкфурта-на-Майне! Что сделает злоумышленник, получивший такую возможность? – Воспользуется ею за Ваш счёт! В большинстве плачевно известных случаев, получая доступ к системе по средствам какой-либо уязвимости, злоумышленники делают следующее: совершают дорогостоящие звонки на дальние расстояния (long-distance calls); перепродают возможность звонка третьим лицам, не подозревающим, что услуга предоставляется на украденных мощностях звонят на номера с премиум обслуживанием, зарабатывая кэшбэк на свой счёт Существует провайдеры телефонных номеров с премиум обслуживанием (international premium rate number - IPRN). Это такие номера, звонки на которые, происходят очень часто и со всего мира. Например, номера для технической поддержки, прогноза погоды, сервисы для взрослых. Провайдеры таких номеров платят часть прибыли тому, кто гонит на них трафик - генератору звонков (call generator). В некоторых случаях провайдер осознанно участвует в мошеннической схеме, а иногда и вовсе не подозревает, что платит кэшбэк злоумышленникам за трафик, сгенерированный на "угнанных" мощностях. В конечном итоге и провайдеры и call generator'ы остаются в выигрыше, а платить приходится тому кого взломали. Всё вышеописанное подпадает под одно определение, которому в английской литературе дали название - toll fraud. На русский язык это можно перевести как неправомочные действия и несанкционированное пользование чужими ресурсами телефонной связи. Злоумышленникам также может быть интересно вывести вашу систему телефонии из строя, устроив атаку типа DoS (Denial of service) - отказ в обслуживании, хотя это случается реже toll fraud'а. Нам известны случаи, когда целый ботнет из серверов FreePBX начинал забрасывать IP-АТС заказчика "мусорными" вызовами, в результате чего на какое-то время, пользоваться системой стало просто невозможно. Техническая реализация Согласно исследованию IBM наиболее атакуемыми VoIP протоколами являются SIP, SCCP и H.255. Самым распространённым VoIP протоколом на сегодняшний день является SIP, поэтому и большинство атак осуществляется именно на этот протокол. Всё начинается с поиска сервера для проведения атаки. Протокол SIP использует стандартный порт 5060, поэтому первое, что сделает потенциальный злоумышленник – это отправит SIP-запрос на данный порт, чтобы посмотреть какой придет ответ. Как правило, для поиска SIP-сервиса используются стандартные запросы INVITE, REGISTER или OPTIONS. Хорошей практикой является перенос SIP-сервиса со стандартного порта на какой-нибудь другой. Таким образом мы можем увести сервис из-под удара. Ещё лучше – ограничить доступ к этому порту только для доверенного списка IP-адресов. Однако, иногда такой возможности просто нет. Для изначального установления соединения в SIP используется метод “тройного рукопожатия” , начинающийся с запроса INVITE, который подтверждается ответом 200 OK. Однако, если этот ответ от вызывающей стороны не получен, то соединение не устанавливается. Если наблюдается много таких незаконченных соединений за коротких промежуток времени, то это может быть признаком того, что против сервера идёт DoS-атака. Кстати, точно таким же образом, злоумышленник может провести атаку против легитимного устройства пользователя, чтобы сбросить его регистрацию на сервере и зарегистрироваться самому. Существует также метод “флуда” запросами REGISTER. Для этого злоумышленник должен знать параметры зарегистрированного устройства, регистрацию которого он хочет сбросить, подделать заголовок Contact в SIP пакете и отправить много (достаточно раз в 15 секунд) запросов REGISTER на сервер. Такой метод называется Registration-hijacking. Эти атаки возможны благодаря тому, что протокол SIP передает информацию в открытом виде, а значит атакующий может её собрать, модифицировать и воспроизвести. Помимо этого, в протоколе SIP не предусмотрено проверки целостности сообщений, поэтому атаки с модифицированной информацией и воспроизведенными пакетами не детектируются. Злоумышленникам совсем не обязательно перехватывать ваш трафик, чтобы вытащить запросы регистраций легитимных пользователей, потом модифицировать их и подсовывать обратно серверу. После обнаружения открытого SIP-порта, можно просто устроить перебор зарегистрированных внутренних номеров, например, от 10 до 9999. Ответ от сервера на запрос регистрации по такой схеме будет однозначно свидетельствовать о том, какие номера есть на IP-АТС, а каких там нет. Например, я могу отправить запрос на регистрацию с номера 2526 с неправильным паролем. Если на сервере зарегистрирован такой номер, то я получу ответ, что пароль неверен (Wrong Password), а если нет – то сообщение о том, что номер не найден (Not Found). Собрав список зарегистрированных номеров можно потом применить против них метод перебора паролей и получить доступ к внутреннему номеру легитимного пользователя. Другой неприятные метод атаки на VoIP позволяет прослушивать ваши телефонные разговоры. Для этого необходимо перехватить сигнальную информацию и соответствующие медиа потоки определенного соединения. Медиа потоки, которые как раз и содержат пакеты с голосом, обычно передаются по UDP с использованием протокола RTP. Захватив достаточное количество пакетов, можно декодировать RTP поток, а затем сделать из них простой аудио файл, который и будет содержать голос. Сделать это можно с помощью программы Wireshark. Мы рассказали про базовые методы проведения атак на VoIP системы. В следующих статьях, мы обязательно расскажем как защититься от каждого типа атаки, как выявить признаки атак и какие инструменты можно для этого использовать.
img
В этой серии статей мы рассмотрим поиск и устранение неисправностей NAT (трансляции сетевых адресов) / PAT (трансляции адресов портов), DHCP и FHRP (протоколы избыточности при первом переходе). NAT/PAT может быть проблемным, и не потому, что настройка несколько сложна (хотя и в этом тоже могут быть проблемы). Но в основном потому, что мы можем столкнуться с проблемами маршрутизации, так как мы периодически меняем IP-адреса. Во второй части этой серии мы рассмотрим наиболее распространенные проблемы DHCP и, наконец, закончим серию статей некоторыми проблемами FHRP. Урок 1 В этом сценарии у нас есть 3 устройства. Маршрутизатор с левой стороны называется "Хост", и он представляет компьютер из нашей локальной сети. Предполагается, что устройство с правой стороны - это какой-то веб-сервер - это то, что мы пытаемся найти в Интернете. В середине мы видим наш маршрутизатор, который настроен для NAT и/или PAT. Пользователи из нашей локальной сети жалуются на то, что они ничего не могут найти в Интернете. Они подтвердили, что их IP-адрес и шлюз по умолчанию в порядке. Давайте изучим маршрутизатор NAT: Хорошая идея, чтобы проверить, может ли маршрутизатор NAT достичь веб-сервера, попробовав простой пинг. Если это не работает, вы, по крайней мере, знаете, что у вас есть проблемы с маршрутизацией или, что веб-сервер не работает (или, возможно, просто блокирует ICMP-трафик). Поскольку это веб-сервер, лучше попробовать подключиться к TCP-порту 80. Вы видите, что это работает, так что маршрутизация между маршрутизатором NAT и веб-сервером + подключение к TCP-порту не является проблемой. Мы можем использовать команду show ip nat translations, чтобы увидеть, происходит ли что-нибудь. Мы видим, что NAT-маршрутизатор что-то транслирует, но если вы посмотрите внимательно, то увидите, что это выглядит не совсем правильно. Внешние локальные и глобальные IP-адреса ссылаются ко внутреннему IP-адресу. Давайте посмотрим на конфигурацию ... show ip nat statistics - хорошая команда для проверки вашей конфигурации. Вы можете видеть, что внутренние и внешние интерфейсы поменялись местами. FastEthernet 0/0 должен быть inside, а FastEthernet 1/0 должен быть outside. NAT(config)#interface fastEthernet 0/0 NAT(config-if)#ip nat inside NAT(config)#interface fastEthernet 1/0 NAT(config-if)#ip nat outside Введем команды, которые позволяют исправить настройки, чтобы у нас были правильные внутренние и внешние интерфейсы. Трафик с хоста на веб-сервер теперь работает! Вот как должна выглядеть таблица трансляции NAT. Внутренний локальный IP-адрес - наш внутренний хост. Внутренний глобальный IP-адрес - это то, что мы настроили на внешней стороне нашего маршрутизатора NAT (FastEthernet 1/0). Внешний локальный и глобальный IP-адрес - наш веб-сервер ... проблема решена! Итог урока: убедитесь, что у вас имеются правильные внутренние и внешние интерфейсы. Урок 2 Та же топология, другая проблема! Опять пользователи нашей локальной сети жалуются, что они не могут связаться с веб-сервером. Давайте проверим наш маршрутизатор NAT: NAT#show ip nat translations Сначала мы проверим, транслирует ли маршрутизатор что-либо. Как видите, тихо ничего не происходит! Мы убедились, что внутренний и внешний интерфейсы были настроены правильно. Однако никаких трансляций не происходит. Внутренний источник был определен с помощью списка доступа 1. Давайте поближе рассмотрим этот ACL: Ааа, смотрите ... кажется, кто-то испортил ACL! Устраним эту неполадку: NAT(config)#no access-list 1 NAT(config)#access-list 1 permit 192.168.12.0 0.0.0.255 Мы создадим ACL так, чтобы он соответствовал 192.168.12.0/24. Теперь мы можем связаться с веб-сервером с нашего хоста. Мы видим Hits, если просмотреть NAT statistics. И я вижу трансляцию ... проблема решена! Итог урока: убедитесь, что вы используете правильный список доступа, соответствующий вашим внутренним хостам. Теперь почитатей продожение статьи про устранение неисправностей с DHCP.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59