По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В больших корпоративных сетях могут использоваться несколько протоколов внутренней маршрутизации. Такая практика часто встречается при слиянии двух компаний. Чтобы компьютеры в одном домене маршрутизации (далее просто «домен») видели хосты в другом домене применятся так называемая редистрибуция. Эта функция позволяет маршрутизатору выбрать маршрут, выученный через один протокол маршрутизации, например, EIGRP и добавить в его в список анонсируемых сетей в другой, например, OSPF. Эта операция выполняется на маршрутизаторах, который смотрят в обе сети и называются точкой редистрибуции (Redistirbution Point). Маршрутизаторы, которые занимаются анонсированием сетей из одного домена в другой используют для этого таблицу маршрутизации. Другими словами, если маршрутизатор не найдет путь до какой-то сети в своей таблице, то он не будет анонсировать его в другой домен. Схема сети Для построения отказоустойчивой сети обычно применяются два или более маршрутизатора, которые занимаются перебросом маршрутной информации с одного домена в другой. В такой ситуации может образоваться так называемая петля маршрутизации. Поясним на рисунке: В данном случае пакеты из маршрутизатор 2, чтобы добраться до сети Х, которая находится в том же домене делает круг через RD1 > R1 > RD2 > Subnet X. Это происходит потому, что маршрут, объявленный RD1 в Домен маршрутизации 2, имеет меньшее административное расстояние (Administrative Distance, AD), чем маршруты, объявленные роутерами из того же домена. Далее рассмотрим в каких случаях возможно такое. Как избежать петель? Один из самых лёгких методов для избегания петель маршрутизации это при добавлении маршрутов из одного домена в другой более высокой метрики. В данном случае маршрутизаторы RD1 и RD2 при анонсировании маршрутов, выученных протоколом RIP в домен OSPF, назначают им метрику 500. И наоборот, из домена OSPF в домен RIP маршруты анонсируются с метрикой 5. Второй способ – это административное расстояние. Любой маршрут, который добавляется в таблицу маршрутизации роутера, сопоставляется с административным расстоянием. Если роутер получил несколько маршрутов в одну и ту же сеть с одной и той же длиной префикса, то в таблицу попадают маршруты с меньшим AD. Маршрутизатор не учитывает метрику. Вместе с этим, AD – это локальное значение для каждого роутера и не объявляется соседним маршрутизаторам. В таблице ниже приведены административные расстояния для всех типов маршрутов на роутерах Cisco. Тип маршрутаАдминистративное расстояниеConnected (подключённый)0Static (Статический)1EIGRP Summary route5eBGP (external BGP)20EIGRP (internal)90IGRP100OSPF110IS-IS115RIP120EIGRP (external)170iBGP (internal BGP)200 Настройки AD по умолчанию для протокола EIGRP при анонсировании маршрутов в OSPF и RIP предотвращают образование петель маршрутизации. На рисунке выше подсеть 172.16.35.0/24 анонсируется через RD1 в домен OSPF. Маршрутизатор R2 в свою очередь анонсирует выученную через external OSPF сеть роутеру RD2. Но RD2 уже выучил маршрут до сети 35.0 через EIGRP, у которого административное расстояние равно 90, что меньше чем AD OSFP, которое равно 110. Таким образом RD2 не добавит маршрут, полученный у R2 с AD 110 в таблицу маршрутизации и соответственно не будет редистрибутировать обратно в EIGRP. Таким образом логику работы маршрутизатора RD2 можно сформулировать следующим образом: RD2 считает маршрут, полученный по EIGRP лучшим, так как у него меньшее административное расстояние, и добавляет его в таблицу маршрутизации. RD2 не будет анонсировать маршрут, полученный через OSPF, так как его нет в таблице маршрутизации. В силу своей специфик, протокол EIGRP также предотвращает образование петель маршрутизации при редистрибуции из OSPF и RIP. Как было указано на таблице выше, внешние маршруты в EIGRP имеют административное расстояние равным 170. В данном случае маршрутизатор RD2 выучил два маршрута в сеть 192.168.11.0/24. Один через R2 в домене OSPF с AD равным 110, второй через R1 в домене EIGRP с административным расстоянием равным 170-ти. Действуя по указанной выше логике, RD2 добавит в таблицу маршрутизации сеть 11.0 выученный у роутера R2 предотвращая таким образом образование петли. Если в случае EIGRP-OSPF, EIGRP-RIP нам удалось без особых усилий предотвратить петлю маршрутизации, то в случае OSPF-RIP всё немного сложнее. Так как OSPF для всех типов маршрутов использует один показатель AD – 110, то при редистрибуции между RIP и OSPF избежать петель удается только изменение административного расстояния протоколов маршрутизации. Делается это командой distance. Для изменения показателя AD для внешних маршрутов, в интерфейсе настройки OSPF прописываем команду distance external ad-value. Значение, указанное параметром должно быть больше, чем у RIP (120). Но не редки случаи, когда в сети работают более двух протоколов маршрутизации. В таких случаях значения AD по умолчанию не помогают. На рисунке ниже сеть 172.20.0.0/16 выучена протоколом EIGRP как внешний через RIP с АР (Административное Расстояние) равным 170. В свою очередь RD1 анонсирует данную сеть в домен OSPF с АР равным 110. RD2 же вместо маршрута с АР 170, полученного из домена EIGRP в таблицу добавляет маршрут с АР 110, полученный из домена OSPF. При таком раскладе маршрутизатор R4 получает два маршрута в одну и ту же сеть с одним и тем же АР. И в случае если метрика RD2 лучше, то R4 отправке пакетов в сеть 172.20 будет использовать более длинный путь. Нужно заметить, что это только в том случае, когда домены расположены именно в указанном порядке. В таких случаях применяется настройка административного расстояния в зависимости от маршрута. Как было указано выше, для изменения АР используется команда distance. Эта команда принимает несколько параметров: distance distance ip-adv-router wc-mask [ acl-number-or-name ] В данной команде обязательным параметром является IP соседнего маршрутизатора. Если IP адрес анонсирующего маршрутизатора совпадёт с указанными в команде, то для маршрутов, полученных от этого соседа данный роутер назначит указанный в команде АР. Рассмотрим указанный случай на практике. Детальная топология сети, показанная выше, указана на рисунке, а конфигурацию можете скачать по ссылке ниже: Скачать файлы конфигрурации Для начала просмотрим с каким АР RD1 выучил маршрут до сети 172.20: Как видим, RD1 добавил в таблицу маршрутизации маршрут, выученный через OSPF, вместо EIGRP, так как АР у OSPF меньше. Теперь изменим поведение маршрутизатора и посмотрим, как это повлияет на таблицу маршрутизации. ip access-list standard match-172-20 permit host 172.20.0.0 router ospf 2 distance 171 1.1.1.1 0.0.0.0 match-172-20 P.S. В GNS скорее всего придётся выключить, затем включить интерфейс, смотрящий в OSPF домен, чтобы изменения применились. В реальной сети всё работает правильно. Поясним, что мы написали выше. Со стандартным списком доступа всё понятно. Команде distance параметром задали 171 – административное расстояние. Затем идет router id маршрутизатора, который анонсирует сеть 172.20. В нашем случае это маршрутизатор RD1. Таким образом, OSPF посмотрит полученный LSA и, если там увидит идентификатор маршрутизатора RD1, а также сеть, которая указана разрешённой в списке доступа, то применит этому маршруту расстояние 171. Отметим, что указанную конфигурацию нужно сделать на всех роутерах, которые занимается распределением маршрутов и для всех сетей их третьего домена.
img
FHRP (Протокол резервирования первого перехода) - это группа протоколов способные обеспечить клиентов отказоустойчивым шлюзом. Что за первый переход такой?. У нас есть коммутируемая среда (SW1) и есть Internet . Internet это маршрутизируемая среда . И для того чтобы перейти из коммутируемой среды , в маршрутизируемую среду для того чтобы выйти в интернет , как раз эти роутеры(R1,R2,VR - Virtual Router) обеспечивают данный переход и для того ,чтобы обеспечить отказоустойчивость этого перехода , его нужно резервировать . А потому и называется протоколы резервирования первого перехода. И все протоколы группы FHRP будут работать в единой логике: R1 , R2 будут прикидываться VR и в случае отказа одного из маршрутизаторов, то его работу возьмет другой. Forwarding Router ( FR ) - это роутер ,который данный момент активен и маршрутизирует трафик . Standby Router ( SR ) - это роутер ,который стоит в резерве и ждет , когда накроется FR ,чтобы перехватите его работу на себя , в случае сбоя маршрутизатора. FHRPs - это группа ,а значит пришло время познакомить вас с этими протоколами. HSRP (Hot Standby Router Protocol) - Проприетарный протокол разработанный Cisco; VRRP (Virtual Router Redundancy Protocol) - Свободный протокол ,сделан на основе HSRP; GLBP (Gateway Load Balancing Protocol) - Проприетарный протоколCisco , обеспечивающий распределение нагрузки на несколько маршрутизаторов( шлюзов) используя 1 виртуальный адрес. CARP( Common Address Redundancy Protocol) - свободный , разработан как часть OpenBSD , портирован во FreeBSD. Итак начнём с HSRP Протокол HSRP рассчитан на 2 роутера, 3 это уже лишний и с этим уже справиться протокол GLBP Предположим ,что R1 это маршрутизатор выхода в интернет и для этого мы поднимем на нём Loopback 1 с адресом 200.200.200.200 и пропишем его в маршруте по умолчанию. Между маршрутизаторами будет настроен RIPv2 и будут анонсированы 2 классовые сети( network 10.0.0.0 и network 192.168.0.0) для простоты анонсирования маршрутов. R2,R1 настраивается также. А теперь по порядку , настроим HSRP: R1(config)# interface e 0/0 - переходим на интерфейс ethernet 0/0 (этот интерфейс смотрит в локальную сеть на коммутатор ) R1(config-if)# ip address 192.168.0.2 255.255.255.0 - задаем ip адрес для физического интерфейса R1(config-if)# standby 1 ip 192.168.0.254 - задаем виртуальный ip адрес (который будет основным шлюзом для свитчей, смотрящих на конфигурируемый роутер). У обоих роутеров он одинаковый R1(config-if)# stanby 1 priority 110 - устанавливаем приоритет данного роутера в 110 (по умолчанию приоритет 100) R1(config-if)# standby 1 preempt - задаем режим приемтинга R1(config-if)# standby 1 authentication md5 key-string MyPassword - задаем аутентификацию, если необходимо. Пароль будет передаваться с защитой алгоритмом хеширования md5, пароль будет MyPassword R1(config-if)# standby 1 timers 100 255 - регулировка таймеров hsrp, где 100 - hello интервал в секундах (как часто посылаются пакеты hello пакеты keep-alive) и 255 - hold interval в секундах (через какой промежуток времени признавать соседа недоступным) R1(config-if)# standby 1 preempt delay minimum 300 - настройка времени задержки (в секундах), через которое роутер будет становиться главным. Эта команда требуется для того,чтобы сначала отработали другие протоколы,прежде чем заработает HSRP . Пример: OSPF включенный на роутере в большой сети не успеет передать маршруты все ,а тут сразу заработает HSRP ,естественно он знать все маршруты не будет,а значить и стабильно гнать трафик тоже. Как раз время delay он будет использовать для того,чтобы дать OSPF передать все маршруты и после этого вкл HSRP. Сам VPC должен получить следующие настройки: IP : 192.168.0.10/24 GW: 192.168.0.254 Главное ,чтобы клиент был в одной подсети и в качестве шлюза был виртуальный IP адрес. TRACKING Также полезно вешать TRACK на интерфейсы ,так как HSRP работает только в сторону ,куда направлен интерфейс ,то он не сможет отработать,когда упадут линки ,смотрящие на роутеры выше.(в данном случае это R3) Router(config)# track 1 interface fa0/1 line-protocol - отслеживаем состояние интерфейса fa0/1, если он падает, то сработает объект отслеживания track 1. Router(config-if)# standby 1 track 1 decrement 15 - если сработает объект отслеживания track 1, то текущий приоритет будет понижен на 15 единиц. Router(config-if)# standby 1 track 1 fa0/1 20 - работает только в HSRP. Позволяет отслеживать интерфейс без дополнительного создания объекта отслеживания. R1,R2,R0 будут настраиваться одинаково, принцип сохраняется. А теперь нюансы HSRP При работе нескольких VLAN , HSRP может идти трафик не совсем рационально из-за протокола STP. Представим ,что R1 это root primary за 10 VLAN, а R2 это ACTIVE router в HSRP . Это значит ,что любой трафик за этот VLAN будет идти следующим образом:VPC - R2 - R1 - R3 вместо того,чтобы идти напрямую VPC - R1 - R3. (L2 трафик всегда ходит через root во избежание петель) Поэтому рекомендуют использовать HSRP version 2(по умолчанию вкл 1 максимум 255 процессов,а во 2 их 4095) и использовать наилучший приоритет для того роутера, который сейчас в сети root primary за текущий VLAN. И хорошей практикой будет если номер VLAN будет совпадать с номером процесса HSRP. ( № HSRP = VLAN ) 3 Роутера в HSRP не имеет смысла держать,так как он всё равно будет в состоянии Listen и включиться только тогда,если active пропадет, standby займет его место , и только тогда он перейдет в состоянии standby.(речь идет о 3 роутере) Тоже самое будет касаться 4,5 ...n роутеров. SLA Бывает и другая ситуация ,когда не сам линк от R1 падает ,а устройство находящиеся за ним,к примеру SW2 упал link до R3. Проблему способен решить сервис SLA - Service Level Agreement. Суть его проста,он ping сервис до провайдера и если он падает ,то отрабатывает track. R1(config)# ip sla 1 - создаем зонд R1(config-ip-sla)# icmp-echo 215.215.215.2 source-interface e0/2 - посылаем icmp echo ping на 215.215.215.2 R1(config-ip-sla-echo)# frequency 10 - посылаем icmp echo ping с частотой каждые 10 секунд R1(config)# ip sla schedule 1 start-time now life forever - задаем расписание работы ip sla. В данном случае зон будет запущен прямо сейчас, при этом время окончания не задано (навсегда) R1(config)# track 1 ip sla 1 reachability - устанавливаем объект отслеживания на доступность того хоста, на который посылаем icmp echo ping R1(config)# ip route 0.0.0.0 0.0.0.0 2.2.2.2 track 1 - направляем трафик по этому маршруту если объект трекинга track 1 работает (хост пингуется) R1(config)# ip route 0.0.0.0 0.0.0.0 3.3.3.3 10 - если не пингуется, направляем трафик в интернет по другому маршруту (Внимание! Здесь важно задать именно плохую метрику, например 10, иначе будут работать оба маршрута! (балансировка)) R1# show track 1 - показать состояние объекта отслеживания VRRP Настройка VRRP не сильно отличается от HSRP . Настраивается он также как и HSRP, только вместо standby используется vrrp. Router(config-if)# vrrp 1 ip 192.168.1.1 - включение vrrp. Проще пройтись по отличиям ,чем заново описывать все команды. У VRRP тоже только 2 состояния Master и Backup(HSRP active и standby) Preempt включен по умолчанию (HSRP он отключен) При падении линка VRRP проводит выборы роутера(HSRP имеет запасной). Главного выбирают по IP адресу, когда проводят выборы. Поддержка Аутентификации в VRRP отсутствует (RFC отсутствует),но в Cisco она реализована(HSRP по умолчанию) VRRP по умолчанию hello таймер равен 1 секунде , dead таймер равен 3(у HSRP 3 и 10 соответственно) Виртуальный адрес может совпадать с адресом интерфейса(HSRP такой адрес не даст прописать) Использует Multicast HSRP равен 224.0.0.2 ( version 1) 224.0.0.102 (version 2) ,а VRRP 224.0.0.18 Может отслеживать только объекты , а HSRP и интерфейсы , и объекты.(смотри раздел tracking) Диагностика Router# show standby (vrrp or glbp) - показать общую информацию по протоколу группы FHRP Router# show standby brief - показать информацию по протоколу группы FHRP в виде таблицы
img
В графическом интерфейсе FreePBX существует коммерческий модуль SysAdmin Pro, стоимость которого составляет $25 (на
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59