По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Поскольку многие люди и устройства подключаются к Интернету, и мы все обмениваемся данными, конфиденциальность является серьезной проблемой для всех. Представьте себе, что вы отправляете конфиденциальный файл другу через Интернет, но вас беспокоит, не перехватывает ли злоумышленник ваши сообщения и не просматривает ли он их. Для обеспечения безопасности ваших данных используется криптография, гарантирующая, что доступ к данным имеет только уполномоченное лицо. С помощью криптографии мы можем шифровать наши сообщения, чтобы сохранить их в тайне от несанкционированных сторон, таких как злоумышленники. Даже если злоумышленник сможет перехватить наши зашифрованные данные, он не сможет просмотреть содержимое зашифрованного сообщения. В этой статье вы узнаете о различных стандартах и алгоритмах шифрования и о том, как они используются для обеспечения конфиденциальности данных в сети. Кроме того, вы узнаете о методах, которые злоумышленники используют для получения секретного ключа и дешифрования. Кроме того, вы узнаете о различных методах хеширования, которые используются для проверки целостности данных. Затем вы изучите как симметричные, так и асимметричные алгоритмы, а также инфраструктуру открытых ключей (Public Key Infrastructure - PKI). Понимание необходимости криптографии В мире информационной безопасности конфиденциальность данных - очень актуальная тема. Все обеспокоены тем, как используются их данные и какие меры безопасности используются для защиты их данных в системах и сетях. В компьютерном мире криптография применяется для защиты наших данных от посторонних лиц. Что такое криптография? Это методы кодирования чувствительной информации с помощью математических алгоритмов, которые затрудняют понимание результата другими людьми, кроме тех, кто уполномочен. Криптография уже много лет используется различными военными организациями для защиты их связи. Сегодня, в эпоху цифровых технологий, мы используем криптографию, чтобы защитить коммуникации между источником и получателем. Чтобы лучше понять, представьте, что вы создаете документ на своем компьютере. Если кто-либо получит доступ к документу, он сможет прочитать его содержимое, и для этого документа нет никакого уровня конфиденциальности. Для защиты данных может применяться процесс шифрования для преобразования данных в формат, доступный для чтения только вам и тем, кто имеет соответствующие полномочия. Это означает, что, если злоумышленник получит зашифрованный файл, то не сможет прочитать фактическое содержимое файла, но увидит зашифрованное сообщение. Любые данные (сообщения), которые не зашифрованы, называются открытым текстом. Если кто-то получит доступ к открытому тексту, он сможет прочитать его содержимое. Чтобы зашифровать сообщение, открытый текст обрабатывается специальным алгоритмом, который преобразует сообщение с открытым текстом в нечитаемый формат. Этот алгоритм называется шифром. Шифр также использует ключ для выполнения процесса шифрования, чтобы преобразовать сообщение в зашифрованный текст. Зашифрованный текст - это зашифрованный формат открытого текста, который не может прочитать никто, кроме тех, кто имеет к нему доступ. Ключ используется в процессе шифрования, поскольку он добавляет дополнительный уровень безопасности к зашифрованному тексту. Без ключа злоумышленник не сможет выполнить криптоанализ, который представляет собой метод, используемый для дешифровки, взлома или шифрования данных. На следующем рисунке показан процесс криптографии: Шифрование данных и криптография играют важную роль в современном мире. Мы используем криптографию для защиты данных в состоянии покоя и данных в движении (при передаче). Данные в состоянии покоя - это терминология, используемая для описания данных, которые хранятся на носителе без доступа приложения или пользователя, в то время как данные в движении - это данные, которые передаются от источника к месту назначения, например, по сети. Существует множество технологий шифрования, таких как Microsoft BitLocker, Apple FileVault и Linux Unified Key Setup (LUKS), которые встроены в их собственные операционные системы. Эти собственные технологии шифрования позволяют пользователю создать логический зашифрованный контейнер хранения в своей операционной системе. Пользователи могут помещать файлы в контейнер и шифровать их, блокируя контейнер. Этот метод позволяет пользователям защитить свои данные в состоянии покоя от любых злоумышленников, которые могут поставить под угрозу компьютер жертвы. Существует множество безопасных и небезопасных сетевых протоколов, которые передают ваши данные по сети. Небезопасные сетевые протоколы не шифруют ваши данные и передают их в виде открытого текста. Если злоумышленник сможет перехватить сетевые пакеты, злоумышленник сможет увидеть все ваши сообщения в виде открытого текста. В следующем рисунке показан захват пакета, содержащего трафик Telnet внутри Wireshark: Представьте, что вы являетесь злоумышленником. Вы можете использовать такой инструмент, как Wireshark, для повторной сборки всех пакетов, показанных на предыдущем рисунке, между исходным и конечным хостами. Это позволит вам увидеть весь сетевой диалог между источником (192.168.0.2) и получателем (192.168.0.1) следующим образом: Как показано на предыдущем скриншоте, мы можем видеть диалог между клиентом и сервером Telnet. Содержимое, красного цвета, - это то, что отправляется от клиента на сервер, в то время как содержимое, синего цвета, - это то, что отправляется с сервера обратно клиенту. Wireshark имеет функцию отслеживания потока пакетов и представления информации в виде преобразования для нас в удобочитаемом формате. На скриншоте обратите внимание, что мы можем видеть логин и пароль пользователя для входа, который отправляется по сети с помощью Telnet. Элементы криптографии Многие думают, что криптография используется для шифрования данных в компьютерном мире. Это утверждение верно, но криптография также имеет дополнительные ключевые преимущества для защиты данных, такие как: Конфиденциальность Целостность Аутентификация источника Невозможность отказа от отвественности Конфиденциальность определяется как сохранение чего-либо, например, объекта или данных, в тайне от посторонних лиц. В вычислительном мире этого можно достичь с помощью алгоритмов шифрования данных, просто зашифровав текстовое сообщение с помощью шифра и ключа. Если неавторизованное лицо или злоумышленник получает зашифрованные данные (зашифрованный текст) без ключа, то он не сможет расшифровать зашифрованное сообщение. Конфиденциальность позволяет нам отправлять защищенные сообщения (данные) между источником и получателем без необходимости беспокоиться о том, перехватывает ли кто-то наши логины и пароли во время их передачи по сети. Шифрование данных позволяет нам защитить наши данные от различных типов атак, таких как Man in the Middle (MiTM). Как только данные будут зашифрованы, злоумышленник не сможет просматривать содержимое фактических данных. Целостность играет жизненно важную роль в области информационной безопасности. Это помогает нам определить, изменяются ли данные или нет, когда они передаются от источника к месту назначения. В эпоху цифровых технологий пользователи всегда отправляют сообщения определенного типа между одним устройством и другим. Даже операционная система на хост-устройствах всегда обменивается информацией в сети. Представьте, что вы отправляете сообщение другу через мессенджер на вашем смартфоне. Как ваш друг узнает, что сообщение не было изменено неавторизованным лицом в процессе передачи? Это серьезная проблема, и, к счастью, существует метод, известный как хеширование, который позволяет устройству проверять целостность входящего сообщения (данных) от источника. Аутентификация - это процесс подтверждения вашей личности в системе. Без аутентификации любой человек сможет получить доступ к устройству и выполнять любые действия без какой-либо ответственности. В криптографии аутентификация используется для того, чтобы помочь нам проверить и подтвердить источник или отправителя сообщения, что называется аутентификацией источника. Сообщение может быть подписано цифровой подписью с помощью цифрового сертификата, принадлежащего отправителю. Когда адресат получает сообщение, получатель может использовать информацию, содержащуюся в цифровом сертификате источника, для проверки подлинности сообщения. Другими словами, чтобы определить, действительно ли сообщение исходило от отправителя, а не от злоумышленника. Невозможность отказа от ответственности (Non-repudiation) используется для предотвращения отрицания пользователем того, что он выполнили какое-либо действие. Типичный пример: представьте, что во время обеда вы посещаете местную кофейню, чтобы выпить напиток. В кассе вы создаете заказ, производите оплату и получаете счет с заказанными вами товарами. Вся информация о транзакции, которую вы только что завершили, печатается в квитанции (счете), такая как время и дата, количество и тип товаров, имя кассира и местонахождение отделения. Эта информация также записывается в базе данных кофейни, поэтому вы не сможете отрицать свое посещение и покупку в этом магазине. Теперь немного обсудим характеристики различных типов шифров, которые используются в алгоритмах шифрования данных. Шифр подстановки В каждом типе алгоритма шифрования (шифра) используется секретный ключ, обеспечивающий конфиденциальность сообщения. В шифре подстановки секретный ключ - это смещение буквы в исходном сообщении. Это означает, что количество букв в текстовом сообщении не изменяется после того, как оно проходит через шифр и становится зашифрованным текстом. Чтобы лучше понять, как работает шифр подстановки, давайте взглянем на очень известный шифр, шифр Цезаря, который существует уже довольно давно. Его методы шифрования просто сдвигают букву алфавита. Шифрование с использованием ключа k = 3. Буква «Е» «сдвигается» на три буквы вперёд и становится буквой «З». Твёрдый знак, перемещенный на три буквы вперёд, становится буквой «Э», и так далее: Исходный алфавит: АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ Шифрованный: ГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯАБВ Оригинальный текст: Съешь же ещё этих мягких французских булок, да выпей чаю. Шифрованный текст получается путем замены каждой буквы оригинального текста соответствующей буквой шифрованного алфавита: Фэзыя йз зьи ахлш пвёнлш чугрщцкфнлш дцосн, жг еютзм ъгб. Поэтому, если злоумышленник перехватит зашифрованный текст во время передачи по сети, не зная секретного ключа, то сообщение останется в безопасности. Перестановочный шифр Другой тип шифра - перестановочный шифр. Этот шифр не сдвигает ни одной буквы сообщения. Он просто переставляет буквы в каждом слове. Один тип перестановочного шифра известен как столбчатый шифр транспонирования. Этот шифр сохраняет одни и те же буквы каждого слова на месте, но создает столбец фиксированного размера. Рассмотрим простой текст hello world, и давайте применим технику простого столбчатого преобразования, как показано ниже Символы простого текста располагаются горизонтально, а зашифрованный текст создается в вертикальном формате: holewdlolr. Теперь получатель должен использовать ту же таблицу, чтобы расшифровать зашифрованный текст в обычный текст. Другой разновидностью перестановочного шифра является шифр рельсового ограждения. Этот шифр записывает выходные данные в зигзагообразном формате. Например, результат записывается по диагонали, начиная слева направо. Используя наш пример предложения, thequickbrownfoxjumpsoverthelazydog (без пробелов), еще раз в качестве нашего открытого текста и ключа в виде трех рельсов, мы получим следующий результат в данном типе шифрования: На предыдущем рисунке, показано, как слова написаны по диагонали. Чтобы создать зашифрованный текст, сообщение читается от верхней строки до последней строки. Это создаст следующий зашифрованный текст: tubnjsrldhqikrwfxupoeteayoecoomvhzg И снова, если злоумышленник перехватит зашифрованный текст, сообщение останется в безопасности до тех пор, пока злоумышленник не узнает (получит) секретный ключ.
img
Как известно, сильный пароль – это очень важная составляющая безопасности любого актива, к которому, тем или иным образом можно получить доступ. Не даром все best practices начинаются с рекомендаций устанавливать сильный, устойчивый к взлому пароль. В данной статье мы будем говорить о прописных истинах, поэтому её можно считать скорее «дружеским советом» для тех, кто только начинает своё знакомство с FreePBX. Слабый пароль, неважно где – это большой риск, который нельзя оставлять без внимания и следует немедленно устранить. Если вам нужно создать криптостойкий пароль, то можно воспользоваться нашим онлайн генератором устойчивых паролей Обзор Начиная с версии 13 во FreePBX появился модуль Weak Password Detection который автоматически детектирует и сообщает о том, что в системе имеется слабый пароль, а также указывает, где именно он обнаружен: на внутреннем номере (Extension), транке (Trunks), конференц - комнате (Conferences) и других модулях. Чтобы проверить, имеется ли у вас в системе слабый пароль, откройте вкладку Reports → Weak Password Detection. Вот как должно выглядеть окно данного модуля у всех без исключения (окно нормального человека): Данное сообщение говорит нам о том, что у нас в системе нет слабых паролей. А теперь, давайте-ка немножко похулиганим и создадим пару сущностей с очень слабыми паролями и посмотрим что из этого выйдет. Наплевав на все best practices, создадим внутренний номер 1111 с паролем 1111: При создании внутренних номеров, FreePBX генерирует сильный, устойчивый к взлому 32-значный пароль. Рекомендуем не менять его без крайней необходимости! А ещё создадим транк с паролем 000: А теперь отправляемся в модуль Weak Password Detection и перед нами открывается «окно курильщика». Вот так не должно быть никогда: Помимо этого, нам будут напоминать о слабых паролях в Dashboard’е: Как только Вы настроите внутреннюю нумерацию, линии к провайдерам (транки), пользовательский доступ, не поленитесь, зайдите лишний раз в модуль Weak Password Detection и если там будет уведомление о слабом пароле в системе – незамедлительно смените его! Но помните, что сильный пароль – это не гарантия безопасности, это всего лишь один из уровней, который должен применяться в комплексе с остальными мероприятиями по защите системы.
img
Всем привет! Мы продолжаем знакомиться с операционной системой Cisco IOS. Недавно в статьях мы уже рассмотрели операционную систему Cisco IOSи ее режимы. В этой статье мы рассмотрим основную структуру команд Cisco IOS. Структура команд Устройства, работающие на Cisco IOS, поддерживают множество команд, каждая из которых имеет определенный формат или синтаксис и может быть выполнена только в соответствующем режиме. Общий синтаксис команды - это команда, за которой следуют любые подходящие ключевые слова и аргументы. Некоторые команды включают подмножество ключевых слов и аргументов, которые обеспечивают дополнительную функциональность. Команды используются для выполнения действия, а ключевые слова используются для идентификации. Команда представляет собой начальное слово или слова, введенные в командной строке. Команды не чувствительны к регистру. После каждой введенной команды, включая любые ключевые слова и аргументы, нужно нажать Enter, чтобы отправить команду командному интерпретатору. Ключевые слова описывают конкретные параметры командного интерпретатора. Например, команда show используется для отображения информации об устройстве. Эта команда имеет различные ключевые слова, которые должны использоваться для определения того, какой конкретный вывод должен отображаться. Например: Switch # show running-config За командой show следует ключевое слово running-config, которое указывает, что текущая конфигурация должна отображаться в качестве вывода. Для команды может потребоваться один или несколько аргументов. В отличие от ключевого слова, аргумент обычно не является предопределенным словом. Аргумент - это значение или переменная, определяемая пользователем. Например: Switch> traceroute 192.168.254.254 Traceroute - команда, 192.168.254.254 - определяемый пользователем аргумент. Контекстно-зависимая справка Контекстно-зависимая справка содержит список команд и аргументов, связанных с этими командами в контексте текущего режима. Чтобы получить доступ к контекстно-зависимой справке, нужно ввести знак вопроса “?” в любом меню. Результат появится сразу, даже без нажатия клавиши Enter. Одна из методов использования контекстно-зависимой справки - это получение списка доступных команд. Это можно использовать, если вы не уверены как правильно пишется команда или хотите увидеть, поддерживает ли IOS определенную команду в определенном режиме. Например, чтобы отобразить команды, доступные на уровне User EXEC, нужно ввести знак вопроса “?”, в меню Switch. Другое использование контекстно-зависимой справки - отображать список команд или ключевых слов, которые начинаются с определенного символа или символов. После ввода последовательности символов, если знак вопроса сразу вводится без пробела, IOS отобразит список команд или ключевых слов для этого контекста, которые начинаются с введенных символов. Например, можно ввести sh? для получения списка команд, начинающихся с sh. И еще один тип контекстно-зависимой справки используется для определения того, какие параметры, ключевые слова или аргументы сопоставляются с определенной командой. При вводе команды введите пробел, за которым следует символ “?” определить, что может или должно быть введено дальше. Например: Switch# cl clear clock Switch# clock set ? hh:mm:ss Current Time Switch# clock set 13:30:00 ? <1-31> Day of the month MONTH Month of the year Switch# clock set 13:30:00 21 February 2018 ? Switch# clock set 13:30:00 21 February 2018 Проверка синтаксиса команд Когда команда отправляется нажатием клавиши Enter, интерпретатор командной строки анализирует команду слева направо, чтобы определить, какое действие запрашивается. Обычно IOS обеспечивает только отрицательную обратную связь, если что-то было введено неверно. Если интерпретатор не может понять введенную команду, он предоставит информацию о том, что не так с командой. Двойственная команда (Ambiguous command) – введено недостаточно символов для, чтобы система распознала команду. Switch# c % Ambiguous command:’c’ Неполная команда (Incomplete command) – не все необходимые ключевые слова или аргументы были введены. Switch# clock set % Incomplete command. Неверная команда (Invalid input) – команда введена некорректно. Ошибка произошла в месте, на которое указывает маркер Switch#clok set 13:30:00 21 February 2018                 ^ %Invalid input detected at ‘^’ marker. Горячие клавиши и сочетания клавиш В CLI IOS есть возможность использовать горячие клавиши и сочетания клавиш, которые облегчают использование системы. Рассмотрим наиболее полезные из них: Стрелка вниз - позволяет прокручивать строку вперед по введенным командам Стрелка вверх – Позволяет прокручивать строку назад по введенным командам Tab - завершает оставшуюся часть частично введенной команды или ключевого слова Ctrl-A - переход к началу строки Ctrl-E - перемещение в конец строки Ctrl-R – повторное отображение строки Ctrl-Z - Выход из режима конфигурации и возврат к User EXEC Ctrl-C - выход из режима конфигурации или прерывание текущей команды Ctrl-Shift-6 - Позволяет пользователю прерывать процесс IOS, такой как ping или traceroute Рассмотрим их подробнее. Tab Клавиша Tab используется для завершения оставшейся части сокращенной команды и параметра, если аббревиатура содержит достаточно букв, чтобы отличаться от любых других доступных в данный момент команд или параметров. Когда для ввода уникальной команды или ключевого слова было введено достаточно символов, нужно нажать Tab, и CLI отобразит остальную часть команды или ключевого слова. Ctrl-R Повторное отображение строки обновит только что напечатанную строку. Например, IOS может отобразить сообщение в CLI во время набора команды пользователем. Ctrl-R можно использовать для обновления строки и избегать повторного ее ввода. Ctrl-Z Выход из режима конфигурации выйдет из любого режима конфигурации и вернется в привилегированный режим EXEC. Поскольку IOS имеет иерархическую структуру, вместо того, чтобы выходить из каждого подрежима отдельно, можно использовать Ctrl-Z, привилегированный режим EXEC. Стрелки вверх и вниз При помощи стрелок можно отображать историю введенных команд. Cisco IOS выполняет буферизацию нескольких прошлых команд и символов, чтобы записи могли быть снова отображены. Буфер полезен для повторного ввода команд без повторного набора. Ctrl-Shift-6 Эта последовательность прерывает любой выполняющийся процесс. Когда процесс IOS инициируется из CLI, например, ping или traceroute, команда работает до тех пор, пока не будет завершена или не будет прервана. Пока процесс выполняется, CLI не отвечает. Чтобы прервать вывод и взаимодействовать с CLI, нужно нажать Ctrl-Shift-6. Ctrl-C Прерывает ввод команды и выходит из режима конфигурации. Это может быть полезно после ввода команды, которая должна быть отменена. Сокращенные команды или ключевые слова Команды и ключевые слова могут быть сокращены до минимального количества символов, которые идентифицируют уникальный выбор. Например, команда configure может быть сокращена до conf, поскольку configure является единственной командой, которая начинается с conf. Аббревиатура con не будет работать, потому что более чем одна команда начинается с con. Ключевые слова также могут быть сокращены. Пример: Switch# show interfaces Switch# sh int
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59