По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Docker и Kubernetes - два ведущих инструмента, используемых в индустрии облачных вычислений. В то время как Docker - это компьютерное приложение, использующее концепцию контейнеризации, а Kubernetes - это система оркестровки контейнеров. Как правило, Docker и Kubernetes используются совместно друг с другом. Тем не менее, сравнение Kubernetes и Docker является чрезвычайно популярной темой в сообществе облачных вычислений. Прежде чем сравнивать две наиболее важные технологии облачных вычислений, давайте сначала кратко расскажем о каждой из них. Kubernetes Впервые выпущенный в июне 2014 года, Kubernetes был изначально разработан Google. За дальнейшую разработку и обслуживание системы оркестровки контейнеров с открытым исходным кодом отвечает Cloud Native Computing Foundation. Согласно официальному сайту, Kubernetes является «системой с открытым исходным кодом для автоматизации развертывания, масштабирования и управления контейнеризованными приложениями». Используя технологию контейнеризации, Kubernetes позволяет запускать контейнеры на нескольких вычислительных узлах, которые могут быть простыми серверами или виртуальными машинами. Перед использованием Kubernetes нужно перепроверить несколько вещей. Одним из них является обеспечение того, чтобы все участвующие вычислительные узлы были надежно связаны друг с другом. Docker Разработанная Docker, Inc., Docker была впервые выпущена в марте 2013 года. Это компьютерная программа, способная выполнять виртуализацию на уровне операционной системы, широко известную как контейнерная упаковка. Docker можно рассматривать в двух разных сторон. С первого взгляда контейнеры Docker - это действительно легкие виртуальные машины, а со второй точки зрения Docker - это платформа для упаковки и доставки программного обеспечения. Последний аспект в первую очередь ответственен за огромную популярность технологии контейнеризации Docker и ее широкое распространение в индустрии облачных вычислений. Можно ли сравнивать Docker и Kubernetes? Сравнивать Docker с Kubernetes - все равно что сравнивать Солнце с Луной. Конечно, оба небесных тела, но сравнение между ними не звучит правильно! Это потому, что, хотя оба сияют, один - звезда, а другой - естественный спутник. Хотя Docker может работать без Kubernetes, а Kubernetes может функционировать в полной мере без Docker, использование обоих в совместной работе улучшает функциональность друг друга. Docker может быть установлен на компьютере для запуска контейнерных приложений. Подход контейнеризации означает запуск приложений в операционной системе таким образом, чтобы они были изолированы от остальной части системы. Приложение будет чувствовать, что оно имеет свою собственную выделенную ОС. Несколько приложений могут работать в одной ОС, как если бы у каждого из них был свой экземпляр операционной системы. Каждое приложение находится внутри контейнера. Docker позволяет создавать, управлять и запускать контейнеры в одной операционной системе. Теперь, когда у вас установлен Docker на нескольких хостах, то есть на операционных системах, вы можете воспользоваться Kubernetes. В таком случае мы называем эти хосты узлами или узлами Docker, которые могут быть серверами с открытым исходным кодом или виртуальными машинами. Прелесть использования Kubernetes с Docker заключается в том, что он помогает автоматизировать балансировку нагрузки контейнера, создание сетей, выделение ресурсов, масштабирование и безопасность на всех хостах Docker с помощью отдельной панели мониторинга или интерфейса командной строки. Повышение масштабируемости приложений и повышение надежности инфраструктуры - две лучшие причины выбора нескольких узлов. Коллекция узлов, управляемых отдельным экземпляром Kubernetes, называется кластером Kubernetes. Kubernetes vs Docker Docker Swarm, про настройку которого можно прочитать тут - это платформа оркестрации контейнеров с открытым исходным кодом. Это собственный механизм кластеризации для Docker, и поэтому он использует ту же командную строку, что и Docker. Ниже приведены различные важные различия между Swarm и Kubernetes. Развертывание приложений Приложение развертывается в Kubernetes с использованием комбинации модулей и служб (или микросервисов). В Docker Swarm развертывание приложения происходит просто в виде микросервисов или сервисов в кластере Swarm. Docker Swarm поставляется с Docker Compose, который помогает в установке приложения. Для идентификации нескольких контейнеров в Docker Swarm есть файлы YAML (YAML Ain’t Markup Language). Настройка контейнера Хотя Docker Swarm API не поддерживает все команды Docker, он предлагает почти все лучшие функциональные возможности Docker. Итак, Docker Swarm поддерживает большинство инструментов, доступных для Docker. Однако, если Docker API не способен выполнять некоторые необходимые операции, не существует простого обходного пути для их использования в Docker Swarm. Как и Docker Swarm, Kubernetes имеет свою собственную версию API, определения клиентов и YAML. Тем не менее, они отличаются от их коллег Docker. Следовательно, нет возможности использовать Docker CLI или Docker Compose для определения контейнеров в Kubernetes. В случаях, когда необходимо переключить платформу, команды и определения YAML необходимо переписать. Балансировка нагрузки Как правило, Ingress используется для балансировки нагрузки в Kubernetes. Тем не менее, есть и другой способ, в котором модуль в Kubernetes выставляется через сервис и его можно использовать в качестве балансировщика нагрузки в кластере, к которому он принадлежит. Docker Swarm имеет DNS-элемент, который можно использовать для распределения входящих запросов по определенному имени службы. Для балансировки нагрузки службы могут быть назначены автоматически или настроены для работы на указанных пользователем портах. Сеть Kubernetes использует плоскую сетевую модель. Таким образом, все модули могут взаимодействовать друг с другом. Как будет происходить взаимодействие между модулями, определяется сетевыми политиками. Обычно модель плоской сети реализована в виде наложения. Модель плоской сети в Kubernetes требует две CIDR (Classless Inter-Domain Routing): один для сервисов, а другой - от которого модули получают IP-адрес. В Docker Swarm узел, присоединяющийся к кластеру Swarm, отвечает за генерацию оверлейной сети для сервисов, охватывающей каждый хост в кластере, и сети мостов Docker только для хостов для контейнеров. Docker Swarm дает пользователям возможность шифровать трафик контейнерных данных при создании оверлейной сети. Масштабируемость Kubernetes - это комплексная структура для распределенных систем. Поскольку он предлагает унифицированный набор API и надежные гарантии состояния кластера, Kubernetes является сложной системой. Эти способности отвечают за замедление развертывания и масштабирования контейнера. По сравнению с Kubernetes, Docker Swarm может развертывать контейнеры на гораздо более высокой скорости. Следовательно, это позволяет быстрее реагировать на масштабирование системы в соответствии с требованиями. Синергия между Docker и Kubernetes Kubernetes способен работать в тандеме с любой технологией контейнеризации. RKT и Docker являются двумя наиболее популярными опциями для механизма оркестровки контейнеров с открытым исходным кодом. Однако последний предпочтительнее, чем первый. Из-за большего предпочтения использования Docker с Kubernetes было приложено много усилий для совершенствования сотрудничества между этими двумя технологиями. Хотя Docker имеет свой собственный механизм оркестровки контейнеров в форме Docker Swarm, склонность к использованию Kubernetes с Docker нельзя не заметить. Это видно из того факта, что Docker for Desktop поставляется с собственным дистрибутивом Kubernetes. Следовательно, совершенно очевидно, что обе технологии, Docker и Kubernetes, объединили свои усилия и также извлекли большую пользу из этого сотрудничества.
img
Старый и безусловно привычный администраторам интерфейс FreePBX 12 – ой версии в прошлом – в декабре 2015 выпущена тринадцатая версия графической оболочки для Asterisk. Как идти в ногу со временем и произвести обновление с 12 на 13 версию FreePBX расскажем в статье. Обновление через WEB - интерфейс Для полного удобства в двенадцатой версии FreePBX был создан встроенный пошаговый мастер обновления. Перейдите во вкладку Admin -> 12 to 13 Upgrade Tool Перед вами откроется приветственное меню мастера обновления. Тут же, развернув выделенную на скриншоте ниже красным вкладку, вы сможете ознакомиться с новинками FreePBX 13. Для продолжения установки, нажмите Check the requirements!. Система проверит текущие версии установленных на вашей IP – АТС Asterisk модулей, и, в случае не совместимости укажет какие из них необходимо будет обновить. Имейте ввиду, для корректного обновления необходимо чтобы следующие условия были выполнены: Asterisk 11 версии или выше PHP версии 5.3.3 или выше FreePBX версии 12 Нажмите на кнопку Proceed to the upgrade process. Мастер обновления занимает 3 простых шага: На первом шаге необходимо указать информацию о пользователе FreePBX, выбрав наиболее подходящую опцию в выпадающем поле Distribution На втором шаге, мастер попросит указать ваши контактные данные, такие как: Ваше имя Название компании Номер телефона Адрес электронной почты Третьим шагом будет начато обновление дистрибутива FreePBX 12 до 13 версии. По окончанию работы мастера обновления ваша система будет готова к работе в рамках 13 версии. Обновление через консоль Если по каким-либо причинам вы не можете обновить FreePBX через пошаговый, встроенный в графический интерфейс мастер обновления, вы можете сделать это через командную строку Asterisk, то есть через CLI. Для этого, выполните указанные ниже команды: amportal a ma upgradeall amportal a m update admin set value = '13.0.0alpha1' where variable = 'version'; exit amportal a ma upgrade framework fwconsole --fix_zend fwconsole ma upgrade core fwconsole ma disable backup fwconsole ma download backup fwconsole ma install backup Рассмотрим команды поподробнее. Сразу обозначим, что fwconsole и amportal это командная прослойка между пользователем через командную строку Linux и FreePBX. Итак: ma - это короткая запись команды moduleadmin. Команда отвечает за администрирование модулей FreePBX ma upgradeall - обновление в FreePBX 12 всех имеющихся модулей m - это короткая запись команды mysql. Команда отвечает за управление базой данных через MySQL update admin set value = '13.0.0alpha1' where variable = 'version'; - обновляем версию в базе данных на 13 a ma upgrade framework - обновление фреймворка FreePBX --fix_zend - с помощью программного обеспечения Zend Guard, на момент активации ваш сервер генерирует хэш – сумму, которая хранится на сервере лицензирования. Данный хэш связывается с идентификатором инсталляции, и называется Zend ID. Данная команда урегулирует все возможные конфликты с Zend. ma upgrade core - обновление модуля Core. Обратите внимание, команда уже выполняется с помощью fwconsole ma disable backup - выключаем модуль Backup ma download backup - загружаем модуль Backup ma install backup - устанавливаем модуль Backup Если у вас имеются коммерческие (купленные) модули, то укажите так же команду fwconsole ma upgrade sysadmin Для завершения установки, укажите следующие команды: fwconsole ma upgradeall fwconsole chown fwconsole reload ma upgradeall - обновление всех модулей до актуальных версий fwconsole chown - команда устанавливает необходимые права на все файлы FreePBX fwconsole reload - перезагружаем FreePBX
img
Процесс анализа программного кода должен быть максимально автоматизирован. Когда вы создаете запрос на включение изменений, как минимум, вам нужно запустить модульные тесты и статический анализ программного кода в функциональной ветке. Средства автоматизации могут многое рассказать о качестве кода: метрики, покрытие кода модульными тестами, обнаружение дублированных строк и т.д. Однако есть как минимум 50 вещей, которые нельзя проверить автоматически. Они нуждаются во внимательном взгляде опытного проверяющего (это дает нам хоть какую-то надежду на то, что роботы не заменят разработчиков в ближайшем будущем). Требования Программный код реализует все функциональные требования, которые необходимы заказчику? Программный код удовлетворяет всем нефункциональным требованиям, таким как производительность и безопасность? Если нефункциональные требования не были упомянуты заказчиком, то этот вопрос необходимо уточнить у проектировщика или у самого заказчика.  Условия сопровождения Помещены ли все интерфейсы, классы и т.д. на соответствующий прикладной уровень в соответствии с архитектурой  Onion/Clean ? Не изобретаете ли вы колесо, когда пишете программный код? Можно ли его заменить чем-то, что уже существует и что предоставляет какая-либо сторонняя библиотека?  Есть ли уже реализованная логика или какие-то ее фрагменты в кодовой базе? Правильно ли была выбрана область жизненного цикла для интерфейса и реализации в контейнере внедрения зависимостей? Являются ли реализованные функции детерминированными (то есть всегда ли они выдают один и тот же результат для одних и тех же входных данных)? Все ли зависимости явно внедряются через конструктор типов? Есть ли сильная связанность между классами, которая может затруднить повторное использование кода? Используются ли  объекты-значения вместо элементарных типов данных для того, чтобы избежать проблемы одержимости элементарными типами? Соответствуют ли реализованные компоненты, такие как функции, классы, интерфейсы и модули,  принципу единственной обязанностей ? Расширяются ли существующие функциональные возможности при помощи декораторов, технологий аспектно-ориентированного программирования (принципа открытия-закрытия) или они модифицируются на месте? Правильно ли реализованы механизмы синхронизации потоков при доступе к объектам-одиночкам в веб-приложениях? Используются ли по возможности  неизменяемые типы данных вместо изменяемых для того, чтобы избежать побочных эффектов? Добавлена ли функция ведения журнала с верными  уровнями ведения протокола в основные места кода, которые требуют отслеживания? Производительность Правильно ли были выбраны  структуры данных ? Например, используется ли структура Hashtable вместо массива, когда нужно часто искать значения, для того, чтобы избежать линейного поиска? Распараллелены ли длительные операции между всеми доступными ядрами для того, чтобы использовать ресурсы компьютера максимально эффективного? Выполняет ли программный код большое количестве  операций по выделению памяти для объектов в куче, оказывая тем самым дополнительную нагрузку на программу сборки мусора? Кэшируются ли данные, которые были считаны из базы данных, локально или в удаленном кэше? Сколько раз текущий код обращается к базе данных? Возможно стоит получить все данные за одно или несколько обращений? Выполняет ли код все обращения к базе данных, ввод-вывод и другие блокирующие вызовы асинхронно? Использует ли код  пул потоков по максимуму вместо того, чтобы создавать новые потоки? Правильно ли выбран баланс между  нормализацией и  денормализацией при создании дополнительных таблиц базы данных? Правильно ли добавляются или исправляются индексы, если запрос на включение изменений содержит новые SQL-запросы? Возникает ли  проблема с N+1 запросами при извлечении данных из базы данных при помощи фреймворка ORM? Установлен ли правильный уровень изоляции транзакций в хранимых процедурах? Возвращают ли SQL-запросы избыточные данные из базы данных, которые не требуются для кода приложения? Используется ли что-то вроде  SELECT * или что-то подобное? Модульное и интеграционное тестирование Полностью ли модульные тесты покрывают дополнительную логику? При появлении исправлений в логике, появляются ли изменения в соответствующем модульном тесте? Всегда ли все реализованные модульные или другие виды тестов ведут себя детерминировано? Например, приостанавливают ли они выполнение потока на какой-то определенный период времени перед утверждением (что по своей сути является ошибочным шаблоном)?  Все ли модульные тесты реализованы в соответствии с принципами  F.I.R.S.T. ? Есть ли какие-либо признаки проблем в модульном тестировании, такие как проблемы с  логикой проверки условий ,  рулеткой с утверждениями ,  дублированием утверждений и другие? Добавлен ли интеграционный тест, как минимум, для happy-path-сценария (сценария счастливого пути) реализованной функции? Все ли зависимости тестируемого объекта имитируются для того, чтобы модульный тест случайно не превратился в интеграционный и не выполнился быстрее положенного? Изолированы ли модульные и интеграционные тесты друг от друга? Конечные точки API Выбираются ли HTTP-команды, такие как  GET, POST, PUT, DELETE и другие, в соответствии с действием их конечной точки? Отвечает ли каждая конечная точка API за выполнение лишь одной бизнес-операции? Или все же нескольких? Возвращает ли конечная точка API правильный код состояния? Например, не возвращает ли она код 401 вместо 500 при несанкционированном запросе? Сжимаются ли объемные ответы перед их отправкой вызывающей стороне? Защищены ли конечные точки API политиками аутентификации и авторизации? Позволяет ли API, который возвращает большой список объектов, фильтровать его и разбивать на страницы? Является ли конечная точка API GET идемпотентной? Используются ли имена существительные вместо глаголов в именах конечных точек API? Критические изменения Имеются ли в конечной точке API такие критические изменения, как переименование API, удаление или переименование его параметров? Имеются ли критические изменения в полезных данных сообщения (в случае, если используется брокер сообщений), например, удаление или переименование его свойств? Повлияют ли такие изменения в схеме базы данных, как удаление столбцов или таблиц, на другие службы системы? Системная среда Насколько загружен ЦП и сколько оперативной памяти потребляет код при выполнении запроса на включение изменений? Будет ли в средах, в которых будет развернут код (среда тестирования, среда приёмочного пользовательского тестирования, производственная среда), достаточно мощный процессор и достаточный объем оперативной памяти для эффективного выполнения кода? Будет ли реализованная логика, алгоритмы, структуры данных и т.д. работать достаточно быстро на большом наборе данных, который может быть в производственной среде? Документация Была ли изменена документация для того, чтобы отразить новые изменения программного кода (документация API, документация по структуре, проектная документация)? Создается ли тикет  технических недоработок , если запрос на внесение изменений содержит неэффективный или «грязный» код, который сейчас невозможно перестроить из-за недостаточного количества времени? Заключение Количество пунктов, на которых проверяющий должен заострить свое внимание, зависит от конкретного проекта и даже от конкретного запроса на внесение изменений. Ваш с коллегами мозговой штурм (если вы примите во внимание вышеприведенные пункты) может значительно снизить риск того, что вы забудете о чем-то важно при анализе программного кода.   
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59