По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сталкивались ли вы задачей одновременной типовой настройки телефонный аппаратов? Например, настроить 50 штук IP – телефонов Yealink. Эта задача будет достаточно рутинной и затратной по времени. В FreePBX создан модуль End Point Manager, который позволяет создать шаблон настроек для определенных групп устройств и затем перенести его на телефонные аппараты. О нем и поговорим. /p> Пару слов про модуль End Point Manager Как уже сказано выше, модуль EPM позволяет производить автоматическую настройку различных единиц оборудования, от конечных телефонных аппаратов до шлюзов. Условно говоря, настройка модуля делится на следующие сегменты: Global Settings - глобальные настройки модуля, такие как IP – адрес Asterisk и прочие Extension Mapping - раздел, в котором сопоставляется шаблон и MAC – адрес устройства Brands - в разделе можно посмотреть марки оборудования, которые были сконфигурированы с помощью EPM Модуль является платным и стоит 75$ на 25 лет. В бесплатной версии модуля, доступна только настройка телефонов марки Sangoma. Полный перечень приведен в таблице ниже. Add Brand - добавьте необходимые брэнды оборудования, для которого вы бы хотели создать шаблон Image Management - здесь можно загрузить картинку в формате GIF, JPEG, или PNG и размером не более 20 мегабайт, которая будет использоваться на оконечных телефонов, например в роли фонового изображения. Данный функционал работает только на устройствах с поддержкой фонового изображения Basefile Edit - данный раздел позволяет менять различные значения, которые нельзя изменить через стандартные настройки телефона, например через его GUI. Представляет из себя XML – файл. Рекомендуем настраивать данный раздел только в том случае, если вы точно знаете что делаете. Custom Extensions - раздел аналогичен настройке в модуле Custom Extension Firmware Management - раздел служит для обновления прошивки телефонов. Network Scan - сетевая утилита, которая позволяет сканировать указанную сеть на предмет наличия в ней поддерживаемых устройств и уточнения их MAC - адресов Без приобретения лицензии на модуль вы сможете работать со следующими устройствами: Производитель Модель Поддержка фонового изображения Sangoma s300 Нет Sangoma s500 Да Sangoma s700 Да Sangoma Vega 50-4FXS - Sangoma Vega 50-8FXS - Sangoma Vega 3000-24FXS - Sangoma Vega 5000-24FXS - Sangoma Vega 5000-50FXS - Поддерживаемые без лицензии устройства В случае оплаты модуля, для работы будут доступны Aastra, Algo, Audio Codes, Cisco, Cortelco, CyberData, Digium, Grandstream, Mitel, Mocet, Obihai, Panasonic, Phoenix Audio, Polycom, Snom, Uniden, VTech, Xorcom и всеми любимый Yealink. Настройка Global Settings В настройках EPM переходим в раздел Global Settings: Internal IP Address - укажите IP – адрес вашего Asterisk. В нашем случае это 192.168.0.77 External IP Address - если какие-то из ваших телефонов будут подключаться к АТС из внешней сети, то в данном поле укажите внешний IP – адрес или FQDN (Fully Qualified Domain Name) Ports - в разделе будут указаны порты для WEB – доступа, порт для HTTP провижининга (автоматической настройки телефонов) и RESTful приложений Phone Admin Password - все управляемые телефоны имеют пароль для администратора. В данном поле вы можете указать его для всех устройств Phone User Password - некоторые модели телефонов, например Cisco, имеют систему авторизации для администратора через обычного пользователя. Здесь нужно указать его пароль ReSync Time - через указанное время телефоны будут обращаться к серверу на предмет изменения в их конфигурационных файлах. По умолчанию, время равно 86400 секунд, что есть 1440 минут, что в свою очередь ровняется 24 часа :) XML-API (RestAPI) Default Login - включение/выключение данной опции позволяет телефону обращаться к различным приложениям через RestAPI Extension Mapping IP Addresses - отображать ли IP – адрес устройства на этапе сопоставления телефона и внутреннего номера Extension Mapping Phone Status - отображать ли время пинга до устройства. Оба параметра замедляют работу. По окончанию настроек нажмите Save Global Настройка шаблона настроек Переходим к настройкам. Сделаем шаблон на примере производителя Sangoma. Для этого, в настройках модуля, в блоке Brands, выберем Sangoma. Для добавления нового шаблона нажимаем New Template. Производим настройки в первой вкладке, которая называется General: Template Name - даем имя для нашего шаблона. Например, New_template Default Template - будет ли данный шаблон шаблоном по умолчанию для телефонов. Выставляем Default Destination Address - в данном поле необходимо указать IP – адрес или доменное имя для нашей IP – АТС Asterisk. При нажатии на кнопки Internal или External, при сохранении, в поле будет автоматически подставлено значение внутреннего или внешнего IP – адреса АТС соответственно. Это удобно в том случае, если мы делаем разные шаблона для внутренних телефонов и для внешних. Provision Server Address - сервер, к которому телефон будет обращаться за конфигурацией. По умолчанию это наш Asterisk Provision Server Protocol - протокол, который будет использовать IP – телефон чтобы получить файл конфигурации. Оставьте в данном поле TFTP Переходим во вкладку Regional Time Zone - временная зона. Поле прибавляет, или удаляет определенное количество часов к GMT (среднее время по Гринвичу). Например, в Москве GMT +03:00 и мы выбираем +03.00 Primary Time Server - главный сервер синхронизации времени по протоколу NTP. Вы можете посмотреть список серверов в интернете Daylight Savings -опция подсказывает телефону, использовать ли настройки DST (Daylight Saving Time) – то есть сезонное время Country Tones - опция настройки гудка. В разных странах они различаются, выберите подходящий Web GUI Language - язык графического интерфейса администрирования IP - телефона LCD Display Language - язык на дисплее телефона Date Format - формат даты. Нам привычно ДД-ММ-ГГ Time Format - формат времени. Мы выбрали 24 часовой формат Двигаемся дальше и переходим во вкладку Options. Разберем здесь самые основные опции: Background Image - выберите фоновое изображение, которое ранее, было залито с помощью пункта меню Image Management Line Label - информация, которая будет отображаться о пользователе телефона на главном дисплее. Может быть следующих видов: Name - имя пользователя. Например, «Иван Петров» Extension - показывать только номер абонента. Например, «101» Name-Extension - показывать и имя и номер. Например, «Иван Петров 101» Multicast Enable - поддержка Multicast пейджинга Функционал Multicast Paging появился в 13 версии FreePBX. Если коротко, то теперь телефон может отправлять на заранее сконфигурированный широковещательный адрес пейджинг запросы. Более подробно вы можете почитать в статье про новинки FreePBX 13 Multicast Address - мультикаст адрес, о котором мы рассказали выше Dial Patterns - шаблон набора номеров для IP - телефона Ring Tone - выбрать номер звукового сопровождения для звонка (рингтон) Screen Saver - что показывать на дисплее телефона по таймауту бездействия Screen Saver Timeout Call Waiting Signal - хотите ли вы услышать звуковой сигнал, при условии того, что вы уже разговариваете с одним из абонентов и вам поступает второй звонок BLF Alert - тип индикатора BLF. Это может быть визуальное мигание, аудио сопровождение или оба сразу По окончанию настроек не забываем нажимать Save Template Соответствие телефона и шаблона После того, как мы произвели настройку шаблона его необходимо проассоциировать с телефонным аппаратом. Мы будем делать это с помощью MAC – адреса устройства. Переходим в раздел Extension Mapping и нажимаем Add Extension В столбце слева выбираем необходимый номер По середине, выбираем производителя и вводим MAC – адрес телефона В левом столбце выбираем шаблон и модель телефона Теперь, чтобы доставить на телефоны адрес TFTP сервера (адреса нашего Asterisk в данном случае), в настройках DHCP сервера необходимо настроить параметр option 150 с IP – адресом TFTP. Телефон обратиться на сервер с просьбой предоставить файл конфигурации для устройства с его MAC – адресом, которое мы создали на этапе ранее.
img
В сегодняшней статье расскажем, как организовать функцию прослушивания телефонных разговоров, как входящих, так и исходящих, которые проходят в реальном времени на нашем сервере IP-АТС Asterisk. Для этих целей будем использовать стандартное приложение Asterisk - ChanSpy(). Данная задача часто встречается при организации call-центров, когда есть группа агентов, принимающих или совершающих вызовы и группа супервайзеров, контролирующих их взаимодействие с клиентами КЦ. Для того, чтобы научить агентов грамотно общаться с клиентами, супервайзерам необходимо иметь доступ не только к записям разговоров агентов, но и к разговорам в реальном времени, в том числе, с возможностью прямо во время разговора подсказать агенту какую-либо информацию и не быть услышанным клиентом. Здесь то нам и приходит на помощь ChanSpy – своеобразный “шпионский” канал. Работа в FreePBX По умолчанию, данная функция доступна в графической оболочке FreePBX по средствам набора специального кода Feature Code Feature Code, а именно -комбинации цифр 555 То есть, мы можем, набрав 555, подключиться к случайному разговору, который в настоящий момент проходит на IP-АТС и прослушивать его. Если разговоров несколько, то переключаться между ними можно с помощью *. Согласитесь, это слегка неудобно. Вдруг нам нужен конкретный агент, который в настоящий момент разговаривает с конкретным клиентом? Не перебирать же все разговоры и пытаться по голосу определить нужного нам агента! Работа в Asterisk CLI Чтобы упростить задачу супервайзерам и расширить стандартный функционал ChanSpy на FreePBX, мы немного отредактируем конфигурационные файлы Asterisk. Для начала давайте обратимся к синтаксису ChanSpy(). ChanSpy([chanprefix,[options]]), где: chanprefix - специальный префикс канала. Например мы можем указать шаблон для внутренних номеров, разговоры которых мы хотим прослушивать; options - буквенные обозначения опций с учётом регистра и параметров прослушивания канала. Рассмотрим наиболее полезные: b – позволяет подключаться к каналам, задействованным в конференц-звонке; d – позволяет вручную управлять режимом прослушивания канала: 4 – только прослушивание, 5 – только подсказки (шёпот), 6 – и подслушивание и подсказки; E – отключается от прослушиваемого канала, когда тот кладёт трубку; q – тихий режим. Не проигрывает никаких звуков, когда происходит подключение к прослушиваемому каналу; v – позволяет настроить начальный уровень громкости от -4 до 4; w – позволяет говорить в подслушиваемый канал. Функция подсказок или “шёпота”; Все остальные опции, доступные в ChanSpy можно узнать из командной строки Asterisk, используя команду: core show application chanspy Для того, чтобы настроить новое правило ChanSpy, нужно открыть файл extension_custom.conf, который лежит в /etc/asterisk/ и открыть его любым удобным текстовым редактором, например nano: nano /etc/asterisk/extension_custom.conf И внесём туда следующий контекст: [app-custom-chanspy] exten => 555.,1,Authenticate(48151623) //48151623 – это пароль для доступа к функционалу прослушивания; exten => 555.,n,Answer exten => 555.,n,Wait(1) exten => 555.,n,ChanSpy(SIP/${EXTEN:3},qw) exten => 555.,n,Hangup Давайте разберём что получилось: пользователь, например, супервайзер набирает комбинацию 555115, где 555 – доступ к ChanSpy, а 115 – внутренний номер агента, к разговору которого хочет подключиться супервайзер. При наборе “555” пользователя попросят ввести пароль (в нашем случае 48151623), это поможет ограничить доступ к функционалу прослушивания разговоров на нашей IP-АТС. После подтверждения пароля, пользователю будет доступен функционал прослушивания разговора и “шёпота”, причем при подключении к разговору никаких уведомлений проигрываться не будет, так как включен тихий режим.
img
Международная организации ISO представляет свою уникальную разработку под названием OSI, которой необходимо создать базу для разработки сетевых стандартов. Сетевая модель TCP/IP контролирует процесс межсетевого взаимодействия между компьютерными системами. Несмотря на это, модель OSI включает в себя 7 уровней сетевого взаимодействия, а модель TCP/IP - 4. Межсетевой экран Netfilter определяет протоколы Некоторые из них могут быть заданы только косвенно. Протоколы сетевого уровня и межсетевое экранирование Для формирования сквозной транспортной системы необходимо предоставить сетевой уровень (Network Layer). Он определяет маршрут передачи данных, преобразует логические адреса и имена в физические; в модели OSI (Таблица 2.1) данный уровень получает дейтаграммы, определяет маршрут и логическую адресацию, и направляет пакеты в канальный уровень, при этом сетевой уровень прибавляет свой заголовок. Протокол IP (Internet Protocol) Основным протоколом является IP, который имеет две версии: IPv4 и IPv6. Основные характеристики протокола IPv4: Размер адреса узла - 4 байта В заголовке есть поле TTL Нет гарантии при доставке, что будет правильная последовательность Пакетная передача данных. Если превысится максимальный размер для пакета, тогда обеспечивается его фрагментация. Версия состоящее из четырех бит поле, которое содержит в себе номер версии IP протокола (4 или 6). Длина заголовка - состоящее их 4х бит поле, которое определяет размер заголовка пакета. Тип обслуживания поле, которое состоит из 1 байта; на сегодняшний день не используется. Его заменяют на два других: DSCP, которое делит трафик на классы обслуживания, размер его составляет 6 бит. ECN - поле, состоящее из 2 бит, используется в случае, если есть перегрузка при передаче трафика. Смещение фрагмента используется в случае фрагментации пакета, поле которого равно 13 бит. Должно быть кратно 8. "Время жизни" поле, длиной в 1 байт, значение устанавливает создающий IP-пакет узел сети, поле, состоящее из 1 байта Транспорт поле, размером в один байт. Доп. данные заголовка поле, которое имеет произвольную длину в зависимости от содержимого и используется для спец. задач. Данные выравнивания. Данное поле используется для выравнивания заголовка пакета до 4 байт. IP уникальный адрес. Адреса протокола четвёртой версии имеют длину 4 байта, а шестой 16 байт. IP адреса делятся на классы (A, B, C). Рисунок 2.2. Сети, которые получаются в результате взаимодействия данных классов, различаются допустимым количеством возможных адресов сети. Для классов A, B и C адреса распределяются между идентификатором (номером) сети и идентификатором узла сети Протокол ICMP Протокол сетевого уровня ICMP передает транспортную и диагностическую информацию. Даже если атакующий компьютер посылает множество ICMP сообщений, из-за которых система примет его за 1 из машин. Тип поле, которое содержит в себе идентификатор типа ICMP-сообщения. Оно длиною в 1 байт. Код поле, размером в 1 байт. Включает в себя числовой идентификатор, Internet Header + 64 bits of Original Data Datagram включает в себе IP заголовок и 8 байт данных, которые могут быть частью TCP/UDP заголовка или нести информацию об ошибке. Типы ICMP-сообщений, есть во всех версиях ОС Альт, и они подразделяются на две большие категории. Протоколы транспортного уровня и межсетевое экранирование При ПТУ правильная последовательность прихода данных. Основными протоколами этого уровня являются TCP и UDP. Протокол UDP Основные характеристики протокола UDP приведены ниже. Простую структура, в отличие от TCP Сведения придут неповрежденными, потому что проверяется контрольная сумма Нет гарантии надёжной передачи данных и правильного порядка доставки UDP-пакетов Последнее утверждение нельзя рассматривать как отрицательное свойство UDP. Поддержка протокола не контролирует доставку пакетов, значит передача данных быстрее, в отличие от TCP. UDP-пакеты являются пользовательскими дейтаграммами и имеют точный размер заголовка 8 байт. Адрес порта источника - поле, размером 16 бит, с № порта. Адрес порта пункта назначения - поле, размером 16 бит, в котором есть адрес порта назначения. Длина - размером 16 бит. Оно предназначено для хранения всей длины дейтаграммы пользователя и заголовка данных. Контрольная сумма. Данная ячейка обнаруживается всею пользовательскую дейтаграмму. В UDP контрольная сумма состоит из псевдозаголовока, заголовка и данных, поступивших от прикладного уровня. Псевдозаголовок это часть заголовка IP-пакета, в котором дейтаграмма пользователя закодирована в поля, в которых находятся 0. Передающее устройство может вычисляет итоговую сумму за восемь шагов: Появляется псевдозаголовок в дейтаграмме. В поле КС по итогу ставится 0. Нужно посчитать число байтов. Если четное тогда в поле заполнения мы пишем 1 байт (все нули). Конечный результат - вычисление контрольной суммы и его удаление. Складываются все 16-битовых секций и дополняются 1. Дополнение результата. Данное число и есть контрольная сумма Убирается псевдозаголовка и всех дополнений. Передача UDP-сегмента к IP программному обеспечению для инкапсуляции. Приемник вычисляет контрольную сумму в течение 6 шагов: Прописывается псевдозаголовок к пользовательской дейтаграмме UDP. Если надо, то дополняется заполнение. Все биты делятся на 16-битовые секции. Складывается все 16-битовых секций и дополняются 1. Дополнение результата. Когда результат = нулю, убирается псевдозаголовок и дополнения, и получает UDP-дейтаграмму только семь б. Однако, если программа выдает иной рез., пользовательская дейтаграмма удаляется. Чтобы передать данные - инкапсулируется пакет. В хосте пункта назначения биты декодируются и отправляются к звену данных. Последний использует заголовок для проверки данных, заголовок и окончание убираются, если все правильно, а дейтаграмма передается IP. ПО делает свою проверку. Когда будет все правильно, заголовок убирается, и пользовательская дейтаграмма передается с адресами передатчика и приемника. UDP считает контрольную сумму для проверки . Если и в этот раз все верно, тогда опять заголовок убирается, и прикладные данные передаются процессу. Протокол TCP Транспортный адрес заголовка IP-сегмента равен 6 (Таблица 2.2). Протокол TCP совсем другой, в отличие от протокола UDP. UDP добавляет свой собственный адрес к данным, которые являются дейтаграммой, и прибавляет ее IP для передачи. TCP образует виртуальное соединение между хостами, что разрешает передавать и получать данные как поток байтов. Также добавляется заголовок перед передачей пакету СУ. Порт источника и порт приемника поля размером по 16 бит. В нем есть номер порта службы источника. Номер в последовательности поле размером в 32 бита, содержит в себе номер кадра TCP-пакета в последовательности. Номер подтверждения поле длиной в 32 бита, индикатор успешно принятых предыдущих данных. Смещение данных поле длиной в 4 бита (длина заголовка + смещение расположения данных пакета. Биты управления поле длиной 6 бит, содержащее в себе различные флаги управления. Размер окна поле размером 16 бит, содержит в себе размер данных в байтах, их принимает тот, кто отправил данный пакет. Макс.значение размера окна - 40967байт. Контр. сумма поле размером 16 бит, содержит в себе значение всего TCP-сегмента Указатель поле размером 16 бит, которое используется, когда устанавливается флаг URG. Индикатор количества пакетов особой важности. Опции - поле произв. длины, размер которого зависит от данных находящихся в нём. Чтобы повысить пропускную функцию канала, необходим способ "скользящего окна". Необходимы только поля заголовка TCP-сегмента: "Window". Вместе с данным полем можно отправлять максимальное количество байт данных. Классификация межсетевых экранов Межсетевые экраны не позволяют проникнуть несанкционированным путем, даже если будет использоваться незащищенныеместа, которые есть в протоколах ТСР/IP. Нынешние МЭ управляют потоком сетевого трафика между сетями с различными требованиями к безопасности. Есть несколько типов МЭ. Чтобы их сравнить, нужно с точностью указать все уровни модели OSI, которые он может просчитать. МЭ работают на всех уровнях модели OSI. Пакетные фильтры Изначально сделанный тип МЭ и есть пакетный фильтр. ПФ - часть маршрутизаторов, которые могут быть допущены к разным сист.адресам. ПФ читают информацию заголовков пакетов 3-го и 4-го уровней. ПФ применяется в таких разделай сетевой инфраструктуры, как: пограничные маршрутизаторы; ос; персональные МЭ. Пограничные роутеры Главным приоритетом ПФ является скорость. Также пф ограничивать доступ при DoS-атаки. Поэтому данные пф встроены в большинство роутеров. Преимущества пф: Пф доступен для всех, так как остается в целостности ТСР-соединение. Недостатки пакетных фильтров: Пфпропускают данные с высших уровней МЭ имеет доступ не ко всей информации Большинство пф не аутентифицируют пользователя. Для исходящего и входящего трафика происходит фильтрация. МЭ анализирующие состояние сессии Такие МЭ являются пакетными фильтрами, которые считывают сохраняемый пакет 4-го уровня OSI. Плюсы МЭ четвертого уровня: Информацию могут узнать только установленные соединения Пф доступен для всех, остается в целостности ТСР-соединение Прокси-сервер прикладного уровня Если применять МЭ ПУ, тогда нам не потребуется устройство, чтобы выполнить маршрутизацию. Прокси-сервер, анализирующий точный протокол ПУ, называется агентом прокси. Такой МЭ имеют много преимуществ. Плюсы прокси-сервера ПУ: Прокси требует распознавание пользователя МЭ ПУ проанализирует весь сетевой пакет. Прокси ПУ создают детальные логи. Минусы прокси-сервера ПУ: МЭ использует больше времени при работе с пакетами рикладные прокси работают не со всеми сетевыми приложениями и протоколами Выделенные прокси-серверы Эти прокси-серверы считывают трафик определенного прикладного протокола и не анализируют его полностью. Прокси-серверы нужны для сканирования web и e-mail содержимого: отсеивание Java-приложений; отсеивание управлений ActiveX; отсеивание JavaScript; уничтожение вирусов; блокирование команд, определенных для приложений и пользователя, вместе с блокирование нескольких типов содержимого для точных пользователей.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59