По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Система записи телефонных разговоров, позволяет компаниям иметь возможность оценивать качество работы сотрудников, отслеживать различные показатели взаимодействия с клиентом, разрешать спорные ситуации. Запись телефонных разговоров - это мощный инструмент, который позволяет оптимизировать работу компании, улучшить качество обслуживания и компетенции сотрудников. На сегодняшний день, лидерами рынка систем записи являются ZOOM, Verint, Nice, Cisco (MediaSense). По какому принципу работает система записи? На этот вопрос мы постараемся ответить. Запись телефонных разговоров как правило делят на два типа: активная и пассивная. Активная (SPANLess) запись – это возможность телефонного аппарата напрямую отправлять RTP поток на сервер записи, а сигнальный трафик приходит через JTAPI*. *JTAPI (Java Telephony Application Programming Interface) – специальный телефонный «эй-пи-ай», позволяющий интегрировать телефонные события. Данный вариант зачастую реализуется при действующем кластере CUCM версией выше 6.0(Cisco Unified Communications Manager) и телефонах с поддержкой Built-in-Bridge. Давайте посмотрим на схему работы активной записи: Активный режим записи разговоров В данном примере, пользователь А, звонит пользователю В. На телефоне пользователя А включен режим Built-in Bridge, и настроен соответствующий профиль записи. CUCM в этот момент фиксирует, что телефон пользователя В подлежит записи и начинает дублировать сигнализацию на интерфейс сервера записи. Вместе с тем, на сервер приходит и RTP поток от пользователя В. Медиа поток декодируется и соотносится с сигнализацией. По окончании обработки, через GUI системы записи мы видим наш разговор, с временными метками, DNIS, ANI и некоторые другие. В контактных центрах, так же возможна интеграция с платформой UCCX, UCCE, Genesys ,Avaya Communication Manager. В результате интеграции с данной платформой, будет возможно передавать агентскую информацию, CallType и многие другие параметры. Давайте теперь разберемся с пассивной записью. Пассивная запись организуется путем настройки SPAN** – сессий для RTP траффика и сигнализации. **SPAN (Switched Port Analyzer) – мониторинговая сессия, которая позволяет дублировать сетевой трафик с одного интерфейса на другой. Чтобы на сервер записи не приходил ненужный трафик, как правило, настраивают RSPAN в сочетании листами доступа (access-list). Давайте снова посмотрим на схему: Пассивный (устаревший) режим записи разговоров На схеме сверху, можно заметить, что роль CUCM сводится к управлению сигнализацией (SCCP или SIP). Предположим, что на центральном коммутаторе есть следующие настройки: SPAN_SW(config)#monitor session 1 source interface f0/1 SPAN_SW(config)#monitor session 1 destination interface f0/3 Все, теперь траффик в обе стороны, как на прием, так и на передаче, с порта Fa 0/1 будет дублироваться на порт Fa 0/3. Можно вводить ограничения по SPAN-сессиям, например: SPAN_SW(config)#monitor session 1 source interface f0/1 tx SPAN_SW(config)#monitor session 1 destination interface f0/3 Это ограничение будет дублировать только исходящий (с порта) траффик. Таким образом, мы рассмотрели архитектурные особенности систем записи. Наша компания имеет большой опыт в инсталляции и поддержке систем записи.
img
Многомерные системы управления данными (МСУБД) объединяют несколько систем баз данных в одну. Вместо работы с несколькими моделями и поиска возможностей для их объединения, МСУБД предлагает общий механизм для различных типов данных. В данной статье приводится подробный обзор многомерных баз данных. Что такое многомерные базы данных? Многомерная база данных (Multi-Model Database) – это система управления, которая сочетает несколько типов БД в одну серверную систему. Большинство СУБД поддерживает одну модель БД, а в МСУБД можно хранить, запрашивать и индексировать данные из нескольких моделей. Важное преимущество многомерных БД заключается в многоязычной сохранности, когда не нужно искать способы для объединения различных моделей. Гибкий подход позволяет хранить данные разными способами. В результате вы получаете: Гибкое и динамичное программирование Снижение избыточности данных Например, изучать взаимосвязи между точками данных или создавать систему рекомендаций гораздо проще с помощью графовых БД, а реляционные БД лучше подходят для определения связи между столбцами данных. Ключевая функция МСУБД заключается в ее способности преобразовывать данные из одного формата в другой. К примеру, данные в формате JSON быстро преобразуются в XML. Преобразование форматов данных обеспечивает дополнительную гибкость и упрощает соответствие определенным требованиям проекта. Примеры использования МСУБД Варианты использования СУБД позволяют лучше понять принципы работы данной модели. Анализируя практические примеры, вам становится ясно, как несколько моделей работают в единой системе. Хранение и управление несколькими источниками данных Классическая IT-система использует различные источники данных. Информация не всегда хранится в том же формате или в той же базе данных. Несколько форматов складываются в сложную систему – трудную для поддержания и поиска данных. Хранение данных в МСУБД облегчает администрирование систем. Все находится в одной базе, поэтому на хранение и управление данными из разных источников тратится меньше времени. Расширение возможностей модели Многомерные базы данных предлагают расширения для моделей. Особенности одних моделей перекрывают недочеты других. Например, очень просто запрашивать данные в JSON-формате через SQL-запросы. Нет необходимости корректировать исходный источник данных. Расширяемость сокращает время обработки данных и устраняет необходимость в ETL-системах (извлечение, преобразование, загрузка). Гибридные среды данных Классическая среда данных разграничивает операционные данные от аналитических. Данные для анализа необходимо преобразовать и хранить отдельно от операционных. Происходит задвоение, и качество данных снижается. Разделенное пространство повышает затраты на техническое обслуживание. Всем базам данных необходимо администрирование и управление резервным копированием. Многомерная БД использует гибридный подход к хранению данных. Унифицированные узлы, в которых хранятся транзакционные данные и из которых извлекаются аналитические, намного проще поддерживать. Централизация данных У данных в организации есть определенные ограничения. Такие ограничения нужны, но они усложняют работу с информацией внутри компании. Многомерные БД хранят данные в формате as-is («как есть»), поэтому никакие преобразования не нужны. Централизация данных дает ценную информацию о существующих данных и предлагает возможности для создания новых вариантов использования. Поиск больших данных Hadoop отлично справляется с обработкой больших объемов данных в разных моделях. Основная причина – скорость получения, обработки и хранения данных. Единственное, чего не хватает Hadoop, – это эффективного механизма поиска. Если взять вычислительные мощности Hadoop и объединить их с возможностями поиска по многомерной БД, то получится функциональная система. Процесс работы становится масштабируемым и удобным для выполнения задач над большими данными. Плюсы и минусы многомерной базы данных В многомерных базах данных есть свои плюсы и минусы. В таблице ниже перечислены ключевые пункты: Плюсы Минусы Постоянство данных Сложность Динамичность Все еще в стадии разработки ACID-совместимость Не хватает методов моделирования Подходят для сложных проектов Не подходят для простых проектов Такая модель подходит для корпоративных настроек с множеством данных. Разные секторы пользуются данными для разных задач. Но детализированной и уже настроенной структуре многоязычной сохранности может не хватать возможностей многомерной системы. Плюсы Преимущества многомерных баз данных: согласованность данных между моделями за счет единой серверной системы динамичная среда с использованием различных типов данных на одной платформе отказоустойчивость, из-за ACID-совместимости подходят для сложных проектов с множественным представлением данных Минусы Недочеты многомерных баз данных: сложность МСУБД, из-за чего с ними трудно работать модель БД все еще развивается и не имеет окончательной формы ограниченная доступность различных методов моделирования не подходит для более простых проектов или систем Какие многомерные базы данных считаются самыми лучшими? На рынке представлено огромное множество многомерных типов БД. Их самой примечательной особенностью является поддержка нескольких моделей на одном сервере. Некоторые БД накладывают несколько моделей на сервер через компоненты. Но такие типы БД не считаются подлинными многомерными базами. Еще одно важное отличие – доступные методы моделирования. Этот аспект крайне важен для того, чтобы получать максимальную пользу от доступных данных. MarkLogic Server MarkLogic Server – это многомерная нереляционная база данных. Она появилась как хранилище XLM, а затем была доработана для хранения различных моделей: документной графовой текстовой пространственной типа «ключ – значение» реляционной Это универсальная, эффективная и безопасная база данных. Возможности сервера MarkLogic: Безопасность и управление. Интегрированное управление безопасностью данных и пользователей. ACID-совместимость. Обеспечивает строгую согласованность данных. Расширенный поиск. Доступ к данным обеспечивает встроенная поисковая система с семантическим поиском. Разноплановая аналитика. Вам доступны настраиваемые инструменты для аналитики и бизнес-аналитики. Встроенное машинное обучение. Интеллектуальное автоматизированное курирование данных с помощью встроенных алгоритмов машинного обучения обеспечивает более быстрый доступ к данным. Отказоустойчивость. Mark Logic предлагает высокую доступность и систему аварийного восстановления, помогающую избегать любого рода сбоев. Поддержка гибридного облака. База данных позволяет самостоятельно управлять развертыванием с помощью гибридных облачных решений. ArangoDB ArangoDB – это нативная многомерная система управления базами данных. Она поддерживает следующие форматы данных: документные графовые «ключ-значение» База данных извлекает и изменяет данные с помощью унифицированного языка запросов AQL. К другим важным особенностям относятся: Расширенные соединения. Позволяет соединять данные с помощью гибких запросов, что снижает их избыточность. Транзакции. Выполнение запросов к нескольким документам с доступной изоляцией и согласованностью транзакций. Сегментирование. Синхронная репликация путем сегментирования позволяет снижать внутреннюю кластерную связь, повышая при этом производительность и скорость соединения. Репликация. Репликация обеспечивает распределенную БД в пределах одного центра обработки данных. Многопоточность. Благодаря многопоточности, БД может использовать несколько ядер. OrientDB OrientDB – это многомерная нереляционная база данных с открытым кодом, написанная на Java. Эта БД поддерживает следующие модели: документную графовую тип «ключ-значение» объектную пространственную OrientDB первая ввела несколько моделей на уровне ядра. Эта база данных поставляется с рядом уникальных функций, к которым относятся: Поддержка SQL. БД поддерживает SQL-запросы, благодаря чему программистам легче переключиться с реляционных моделей на OrientDB. ACID-совместимость. База данных полностью транзакционна; таким способом достигается ее надежность. Распределенная. Полная поддержка репликации с множеством master на разных выделенных серверах. Портативная. Позволяет быстро импортировать реляционные базы данных. Заключение Существует великое множество методов моделирования баз данных, и в каждом решении можно найти свои плюсы и минусы. Многомерные БД стремятся объединить различные базы данных в единую серверную систему, благодаря чему при разрастании системы ее сложность и потребление ресурсов не увеличиваются.
img
Поскольку многие люди и устройства подключаются к Интернету, и мы все обмениваемся данными, конфиденциальность является серьезной проблемой для всех. Представьте себе, что вы отправляете конфиденциальный файл другу через Интернет, но вас беспокоит, не перехватывает ли злоумышленник ваши сообщения и не просматривает ли он их. Для обеспечения безопасности ваших данных используется криптография, гарантирующая, что доступ к данным имеет только уполномоченное лицо. С помощью криптографии мы можем шифровать наши сообщения, чтобы сохранить их в тайне от несанкционированных сторон, таких как злоумышленники. Даже если злоумышленник сможет перехватить наши зашифрованные данные, он не сможет просмотреть содержимое зашифрованного сообщения. В этой статье вы узнаете о различных стандартах и алгоритмах шифрования и о том, как они используются для обеспечения конфиденциальности данных в сети. Кроме того, вы узнаете о методах, которые злоумышленники используют для получения секретного ключа и дешифрования. Кроме того, вы узнаете о различных методах хеширования, которые используются для проверки целостности данных. Затем вы изучите как симметричные, так и асимметричные алгоритмы, а также инфраструктуру открытых ключей (Public Key Infrastructure - PKI). Понимание необходимости криптографии В мире информационной безопасности конфиденциальность данных - очень актуальная тема. Все обеспокоены тем, как используются их данные и какие меры безопасности используются для защиты их данных в системах и сетях. В компьютерном мире криптография применяется для защиты наших данных от посторонних лиц. Что такое криптография? Это методы кодирования чувствительной информации с помощью математических алгоритмов, которые затрудняют понимание результата другими людьми, кроме тех, кто уполномочен. Криптография уже много лет используется различными военными организациями для защиты их связи. Сегодня, в эпоху цифровых технологий, мы используем криптографию, чтобы защитить коммуникации между источником и получателем. Чтобы лучше понять, представьте, что вы создаете документ на своем компьютере. Если кто-либо получит доступ к документу, он сможет прочитать его содержимое, и для этого документа нет никакого уровня конфиденциальности. Для защиты данных может применяться процесс шифрования для преобразования данных в формат, доступный для чтения только вам и тем, кто имеет соответствующие полномочия. Это означает, что, если злоумышленник получит зашифрованный файл, то не сможет прочитать фактическое содержимое файла, но увидит зашифрованное сообщение. Любые данные (сообщения), которые не зашифрованы, называются открытым текстом. Если кто-то получит доступ к открытому тексту, он сможет прочитать его содержимое. Чтобы зашифровать сообщение, открытый текст обрабатывается специальным алгоритмом, который преобразует сообщение с открытым текстом в нечитаемый формат. Этот алгоритм называется шифром. Шифр также использует ключ для выполнения процесса шифрования, чтобы преобразовать сообщение в зашифрованный текст. Зашифрованный текст - это зашифрованный формат открытого текста, который не может прочитать никто, кроме тех, кто имеет к нему доступ. Ключ используется в процессе шифрования, поскольку он добавляет дополнительный уровень безопасности к зашифрованному тексту. Без ключа злоумышленник не сможет выполнить криптоанализ, который представляет собой метод, используемый для дешифровки, взлома или шифрования данных. На следующем рисунке показан процесс криптографии: Шифрование данных и криптография играют важную роль в современном мире. Мы используем криптографию для защиты данных в состоянии покоя и данных в движении (при передаче). Данные в состоянии покоя - это терминология, используемая для описания данных, которые хранятся на носителе без доступа приложения или пользователя, в то время как данные в движении - это данные, которые передаются от источника к месту назначения, например, по сети. Существует множество технологий шифрования, таких как Microsoft BitLocker, Apple FileVault и Linux Unified Key Setup (LUKS), которые встроены в их собственные операционные системы. Эти собственные технологии шифрования позволяют пользователю создать логический зашифрованный контейнер хранения в своей операционной системе. Пользователи могут помещать файлы в контейнер и шифровать их, блокируя контейнер. Этот метод позволяет пользователям защитить свои данные в состоянии покоя от любых злоумышленников, которые могут поставить под угрозу компьютер жертвы. Существует множество безопасных и небезопасных сетевых протоколов, которые передают ваши данные по сети. Небезопасные сетевые протоколы не шифруют ваши данные и передают их в виде открытого текста. Если злоумышленник сможет перехватить сетевые пакеты, злоумышленник сможет увидеть все ваши сообщения в виде открытого текста. В следующем рисунке показан захват пакета, содержащего трафик Telnet внутри Wireshark: Представьте, что вы являетесь злоумышленником. Вы можете использовать такой инструмент, как Wireshark, для повторной сборки всех пакетов, показанных на предыдущем рисунке, между исходным и конечным хостами. Это позволит вам увидеть весь сетевой диалог между источником (192.168.0.2) и получателем (192.168.0.1) следующим образом: Как показано на предыдущем скриншоте, мы можем видеть диалог между клиентом и сервером Telnet. Содержимое, красного цвета, - это то, что отправляется от клиента на сервер, в то время как содержимое, синего цвета, - это то, что отправляется с сервера обратно клиенту. Wireshark имеет функцию отслеживания потока пакетов и представления информации в виде преобразования для нас в удобочитаемом формате. На скриншоте обратите внимание, что мы можем видеть логин и пароль пользователя для входа, который отправляется по сети с помощью Telnet. Элементы криптографии Многие думают, что криптография используется для шифрования данных в компьютерном мире. Это утверждение верно, но криптография также имеет дополнительные ключевые преимущества для защиты данных, такие как: Конфиденциальность Целостность Аутентификация источника Невозможность отказа от отвественности Конфиденциальность определяется как сохранение чего-либо, например, объекта или данных, в тайне от посторонних лиц. В вычислительном мире этого можно достичь с помощью алгоритмов шифрования данных, просто зашифровав текстовое сообщение с помощью шифра и ключа. Если неавторизованное лицо или злоумышленник получает зашифрованные данные (зашифрованный текст) без ключа, то он не сможет расшифровать зашифрованное сообщение. Конфиденциальность позволяет нам отправлять защищенные сообщения (данные) между источником и получателем без необходимости беспокоиться о том, перехватывает ли кто-то наши логины и пароли во время их передачи по сети. Шифрование данных позволяет нам защитить наши данные от различных типов атак, таких как Man in the Middle (MiTM). Как только данные будут зашифрованы, злоумышленник не сможет просматривать содержимое фактических данных. Целостность играет жизненно важную роль в области информационной безопасности. Это помогает нам определить, изменяются ли данные или нет, когда они передаются от источника к месту назначения. В эпоху цифровых технологий пользователи всегда отправляют сообщения определенного типа между одним устройством и другим. Даже операционная система на хост-устройствах всегда обменивается информацией в сети. Представьте, что вы отправляете сообщение другу через мессенджер на вашем смартфоне. Как ваш друг узнает, что сообщение не было изменено неавторизованным лицом в процессе передачи? Это серьезная проблема, и, к счастью, существует метод, известный как хеширование, который позволяет устройству проверять целостность входящего сообщения (данных) от источника. Аутентификация - это процесс подтверждения вашей личности в системе. Без аутентификации любой человек сможет получить доступ к устройству и выполнять любые действия без какой-либо ответственности. В криптографии аутентификация используется для того, чтобы помочь нам проверить и подтвердить источник или отправителя сообщения, что называется аутентификацией источника. Сообщение может быть подписано цифровой подписью с помощью цифрового сертификата, принадлежащего отправителю. Когда адресат получает сообщение, получатель может использовать информацию, содержащуюся в цифровом сертификате источника, для проверки подлинности сообщения. Другими словами, чтобы определить, действительно ли сообщение исходило от отправителя, а не от злоумышленника. Невозможность отказа от ответственности (Non-repudiation) используется для предотвращения отрицания пользователем того, что он выполнили какое-либо действие. Типичный пример: представьте, что во время обеда вы посещаете местную кофейню, чтобы выпить напиток. В кассе вы создаете заказ, производите оплату и получаете счет с заказанными вами товарами. Вся информация о транзакции, которую вы только что завершили, печатается в квитанции (счете), такая как время и дата, количество и тип товаров, имя кассира и местонахождение отделения. Эта информация также записывается в базе данных кофейни, поэтому вы не сможете отрицать свое посещение и покупку в этом магазине. Теперь немного обсудим характеристики различных типов шифров, которые используются в алгоритмах шифрования данных. Шифр подстановки В каждом типе алгоритма шифрования (шифра) используется секретный ключ, обеспечивающий конфиденциальность сообщения. В шифре подстановки секретный ключ - это смещение буквы в исходном сообщении. Это означает, что количество букв в текстовом сообщении не изменяется после того, как оно проходит через шифр и становится зашифрованным текстом. Чтобы лучше понять, как работает шифр подстановки, давайте взглянем на очень известный шифр, шифр Цезаря, который существует уже довольно давно. Его методы шифрования просто сдвигают букву алфавита. Шифрование с использованием ключа k = 3. Буква «Е» «сдвигается» на три буквы вперёд и становится буквой «З». Твёрдый знак, перемещенный на три буквы вперёд, становится буквой «Э», и так далее: Исходный алфавит: АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ Шифрованный: ГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯАБВ Оригинальный текст: Съешь же ещё этих мягких французских булок, да выпей чаю. Шифрованный текст получается путем замены каждой буквы оригинального текста соответствующей буквой шифрованного алфавита: Фэзыя йз зьи ахлш пвёнлш чугрщцкфнлш дцосн, жг еютзм ъгб. Поэтому, если злоумышленник перехватит зашифрованный текст во время передачи по сети, не зная секретного ключа, то сообщение останется в безопасности. Перестановочный шифр Другой тип шифра - перестановочный шифр. Этот шифр не сдвигает ни одной буквы сообщения. Он просто переставляет буквы в каждом слове. Один тип перестановочного шифра известен как столбчатый шифр транспонирования. Этот шифр сохраняет одни и те же буквы каждого слова на месте, но создает столбец фиксированного размера. Рассмотрим простой текст hello world, и давайте применим технику простого столбчатого преобразования, как показано ниже Символы простого текста располагаются горизонтально, а зашифрованный текст создается в вертикальном формате: holewdlolr. Теперь получатель должен использовать ту же таблицу, чтобы расшифровать зашифрованный текст в обычный текст. Другой разновидностью перестановочного шифра является шифр рельсового ограждения. Этот шифр записывает выходные данные в зигзагообразном формате. Например, результат записывается по диагонали, начиная слева направо. Используя наш пример предложения, thequickbrownfoxjumpsoverthelazydog (без пробелов), еще раз в качестве нашего открытого текста и ключа в виде трех рельсов, мы получим следующий результат в данном типе шифрования: На предыдущем рисунке, показано, как слова написаны по диагонали. Чтобы создать зашифрованный текст, сообщение читается от верхней строки до последней строки. Это создаст следующий зашифрованный текст: tubnjsrldhqikrwfxupoeteayoecoomvhzg И снова, если злоумышленник перехватит зашифрованный текст, сообщение останется в безопасности до тех пор, пока злоумышленник не узнает (получит) секретный ключ.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59