По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы продолжаем постигать основы важнейшего протокола, использующегося в IP телефонии и в сегодняшней статье рассмотрим основные сценарии установления соединения, а также работу основных компонентов протокола SIP. Протокол SIP имеет 3 стандартных сценария установления соединения, которые отличаются наличием и участием тех или и иных устройств. Пример №1 Установление соединения между User Agent’ами, когда в сети отсутствуют всякого рода серверы. Простейшим примером является сеанс связи, в котором принимают участие только два пользователя. Терминальное оконечное оборудование называется UA (User Agent), когда одновременно совмещает в себе функции UAС (User Agent Client) - клиента и UAS (User Agent Server) - сервера. В данном случае сценарий установления соединения будет выглядеть так: . Абонент A снимает телефонную трубку и набирает номер Абонента B, тем самым генерируя запрос INVITE , который содержит описание сеанса связи. Устройство абонента B отвечает сообщением 100 Trying , которое означает, что запрос находится в обработке. После обработки запроса устройство абонента B уведомляет его о входящем вызове, а в сторону абонента A отвечает сообщением 180 Ringing, что соответствует контролю посылки вызова. Абонент B снимает телефонную трубку, отвечая сообщением 200 OK, означающее успешную обработку запроса. Устройство абонента A прекращает прием контроля посылки вызова и посылает подтверждение ACK, означающее прием ответа на запрос INVITE. Между абонентами устанавливается разговорная фаза. Происходит передача голосового трафика по протоколу RTP (Real-Time Transfer Protocol). Важно отметить, что SIP не участвует в непосредственной передаче голоса, а лишь предоставляет условия и способы согласования открытия неких каналов обмена на основе других протоколов, в данном случае - RTP. Абонент A кладет телефонную трубку, тем самым инициируя завершение передачи голосового потока. Устройство абонента A генерирует запрос Bye, в сторону устройства абонента B. Устройство абонента B отвечает сообщением 200 OK, означающем успешную обработку запроса Bye. Терминальное оконечное оборудование абонентов A и B возвращается в исходное состояние. Однако, данный сценарий установления соединения является самым примитивным, можно даже сказать частным. Обычно в сети присутствует SIP прокси сервер, который принимает и обрабатывает запросы от пользователей и выполняет, соответствующие этим запросам, действия. Пример №2 Рассмотрим сценарий установления соединения между двумя пользователями. В данном случае задачу поиска и приглашения абонента выполняет Прокси сервер, вызывающему пользователю необходимо знать только постоянный номер вызываемого абонента. Отметим, что функции прокси сервера выполняет офисная телефонная станция Как видно из рисунка, процесс установления и разъединения соединения происходит аналогично первому сценарию, только в качестве посредника при передаче сообщений протокола SIP выступает SIP Proxy. Пример №3 Допустим, что в сети имеется множество пользователей, число которых постоянно пополняется. Они могут менять свое фактическое положение, ставить переадресацию (redirection) на другой номер, проводить конференц – звонки и др. Для предоставления подобных сервисов требуется наличие в сети соответствующих серверов, поддерживающих ту или иную функцию. Сервер регистрации (Registration Server) для аутентификации и авторизации пользователей. Сервер определения местоположения (Allocation Server) для определения реального местонахождения пользователей. Сервер переадресации (Redirect Server) для перенаправления звонков на другие номера, в случае если пользователь настроил данную функцию. Сервер регистрации это логический элемент и обычно его функции выполняет SIP Proxy, такие совмещенные сервера называют Registar. SIP Proxy может также выполнять функции серверов определения местоположения и переадресации, такое совмещение полезно в плане масштабируемости сети. Приведем пример, когда сеть содержит некий комбинированный SIP Proxy, который поддерживает все функции, описанные выше. Допустим, что новый, еще не зарегистрированный пользователь A,вызывает пользователя B, который уже прошел процедуру авторизации. Новый User Agent A посылает серверу сообщение REGISTER , которое инициирует процесс регистрации. Т.к User Agent A ещё не зарегистрирован, то сервер Registar отвечает сообщением 401 Unauthorized Тогда User Agent A посылает серверу сообщение REGISTER + login, содержащее логин и пароль. Сервер Registar отвечает сообщением 200 OK, на этом процесс регистрации закончен. Теперь пользователь А авторизован на сервере и может совершать звонки. User Agent A инициирует установление связи с пользователем B сообщением INVITE. На данном этапе включаются функции серверов определения местоположения и переадресации, сервер отвечает сообщением 302 Moved Temporarily, означающее, что вызываемый абонент временно сменил местоположение и содержащее его новые данные для установления соединения. User Agent A отвечает сообщением ACK, которое означает прием ответа от Redirect сервера на запрос INVITE. Далее User Agent A инициирует новое установление соединения напрямую к пользователю B, в соответствии с полученными данными. Как видно из рисунка дальнейший процесс соединения происходит аналогично сценарию 1. В следующей статье мы подробно рассмотрим основные модификации протокола SIP для взаимодействия с традиционными телефонными сетями, использующими сигнализацию ОКС-7.
img
Виртуализация часто применяется для поиска более простого способа решения некоторых проблем, отмеченных в начальных статьях этой темы, таких как разделение трафика. Как и все в мире сетевой инженерии, здесь есть компромиссы. На самом деле, если вы не нашли компромисс, вы плохо искали. В этом разделе будут рассмотрены некоторые (хотя, конечно, не все) различные компромиссы сложности в области виртуализации сети. Основой этого обсуждения будет триада компромиссов сложности: Состояние: количество состояний и скорость, с которой изменяется состояние в сети (особенно в плоскости управления). Оптимизация: оптимальное использование сетевых ресурсов, включая такие вещи, как трафик, следующий по кратчайшему пути через сеть. Поверхность: количество слоев, глубина их взаимодействия и широта взаимодействия. Поверхности взаимодействия и группы связей общих рисков Каждая система виртуализации, когда-либо задуманная, реализованная и развернутая, создает в некотором роде общий риск. Например, рассмотрим одну линию, по которой передается несколько виртуальных каналов, каждый из которых передает трафик. Должно быть очевидным (на самом деле тривиальным) наблюдение, что в случае отказа одного физического канала произойдет сбой всех виртуальных каналов. Конечно, вы можете просто перенаправить виртуальные каналы на другой физический канал. Правильно? Может быть, а может и нет. Рисунок 1 иллюстрирует это. С точки зрения A и D, есть две линии, доступные через B и C, каждая из которых обеспечивает независимое соединение между хостом и сервером. В действительности, однако, и провайдер 1, и провайдер 2 приобрели виртуальные каналы через единственное соединение у провайдера 3. Когда единственное соединение в сети провайдера 3 выходит из строя, трафик может быть перенаправлен с основного пути через провайдера 1 на путь через провайдера. 2, но поскольку оба канала используют одну и ту же физическую инфраструктуру, ни одна из них не сможет передавать трафик. Говорят, что эти два звена в этой ситуации разделяют одну общую судьбу, потому что они являются частью Shared Risk Link Group (SRLG). Можно найти и обойти SRLG или ситуации с shared fate, но это усложняет плоскость управления и/или управление сетью. Например, невозможно обнаружить эти shared fate без ручного тестирования различных ситуаций отказа на физическом уровне или изучения сетевых карт, чтобы найти места, где несколько виртуальных каналов проходят по одному и тому же физическому каналу. В ситуации, описанной на рисунке 1, найти ситуацию с shared fate было бы почти невозможно, поскольку ни один из провайдеров, скорее всего, не скажет вам, что использует линию от второго провайдера, показанного на рисунке как провайдер 3, для предоставления услуг. Как только эти ситуации с shared fate обнаружены, необходимо предпринять некоторые действия, чтобы избежать серьезного сбоя в работе сети. Обычно для этого требуется либо вводить информацию в процесс проектирования, либо усложнять дизайн, либо вводить информацию в плоскость управления (см. RFC8001 в качестве примера типа сигнализации, необходимой для управления группами SRLG в плоскости управления, спроектированной трафиком). По сути, проблема сводится к следующему набору утверждений: Виртуализация - это форма абстракции. Абстракция удаляет информацию о состоянии сети с целью снижения сложности или предоставления услуг за счет реализации политики. Любое нетривиальное сокращение информации о состоянии сети так или иначе снизит оптимальное использование ресурсов. Единственным противодействием конечному состоянию из этих трех, является протекание информации через абстракцию, поэтому можно восстановить оптимальное использование ресурсов - в этом случае отказ одного канала не вызывает полного отказа потока трафика через сеть. Единственное решение, таким образом, - сделать абстракцию сквозной абстракцией, что снизит эффективность абстракции при контроле области действия состояния и реализации политики. Поверхности взаимодействия и наложенные плоскости управления В сетевой инженерии принято накладывать друг на друга два протокола маршрутизации или две плоскости управления. Хотя это не часто рассматривается как форма виртуализации, на самом деле это просто разделение состояния между двумя различными плоскостями управления для контроля количества состояний и скорости изменения состояний, чтобы уменьшить сложность обеих плоскостей управления. Это также часто встречается при запуске виртуальных наложений в сети, поскольку между головным и хвостовым узлами туннеля будет существовать нижележащая плоскость управления, обеспечивающая достижимость, и плоскость управления наложением, обеспечивающая достижимость в виртуальной топологии. Две наложенные друг на друга плоскости управления будут взаимодействовать иногда неожиданным образом. Для иллюстрации используется рисунок 2. На рисунке 2: Каждый маршрутизатор в сети, включая B, C, D и E, использует две плоскости управления (или, если это проще, протоколы маршрутизации, отсюда протокол 1 и протокол 2 на рисунке). Протокол 1 (оверлей) зависит от протокола 2 (базовый) для обеспечения доступности между маршрутизаторами, на которых работает протокол 1. Протокол 2 не содержит информации о подключенных устройствах, таких как A и F; вся эта информация передается в протоколе 1. Протокол 1 требует гораздо больше времени для схождения, чем протокол 2. Более простой путь от B к E проходит через C, а не через D. Учитывая этот набор протоколов, предположим, что C на рисунке 2 удален из сети, двум управляющим плоскостям разрешено сходиться, а затем C снова подключается к сети. Каков будет результат? Произойдет следующее: После удаления C сеть снова объединится с двумя путями в локальной таблице маршрутизации в B: F доступен через E. E доступен через D. После повторного подключения C к сети протокол 2 быстро сойдется. После повторной конвергенции протокола 2 лучший путь к E с точки зрения B будет через C. Следовательно, у B теперь будет два маршрута в локальной таблице маршрутизации: F доступен через E. E достижимо через C. B перейдет на новую информацию о маршрутизации и, следовательно, будет отправлять трафик к F через C до того, как протокол 1 сойдется, и, следовательно, до того, как C узнает о наилучшем пути к F. С момента, когда B начинает пересылку трафика, предназначенного для F в C, и момента, когда протокол 1 сойдется, трафик, предназначенный для F, будет отброшен. Это довольно простой пример неожиданного взаимодействия наложенных протоколов. Чтобы решить эту проблему, вам необходимо ввести информацию о состоянии конвергенции протокола 1 в протокол 2, или вы должны каким-то образом заставить два протокола сходиться одновременно. В любом случае вы по существу добавляете состояние обратно в два протокола, чтобы учесть их разницу во времени конвергенции, а также создавая поверхность взаимодействия между протоколами. Примечание: Этот пример описывает фактическое взаимодействие конвергенции между IS-IS и BGP, или протоколом Open Shortest Path First (OSPF) и BGP. Чтобы решить эту проблему, более быстрый протокол настроен на ожидание, пока BGP не сойдется, прежде чем устанавливать какие-либо маршруты в локальной таблице маршрутизации.
img
В эпоху автоматизации люди все время ищут средства для эффективного выполнения задач. А почему бы и нет, каждая секунда имеет значение! Аналогично, если вы пользуетесь Unix-подобной операционной системой, планировщик Cron очень экономит время за счет автоматизации рутинных задач. Давайте кратко разберем, как это работает, а затем изучим некоторые облачные решений для мониторинга самого Cron. Так, что же такое Cron и с чем его едят? Планировщик Cron - это служебная программа, которая выполняет заранее запланированные сценарии или команды на сервере. Эта команда встроена в запланированное время и дату для автоматического выполнения без выполнения вручную. Кроме того, планировщик Cron точно реализованы для автоматизации повторяющихся задач, таких как удаление файлов за неделю, перезагрузка сервера или выполнение некоторых других функций. Основные элементы задания Cron Планировщик Cron работает поверх трех важными компонентов: Сценарий - сценарий является первым составляющим Cron, которое вызывается для выполнения. Расписание - когда запускать указанные сценарии. Действие - это ход вывода, который происходит после окончательного выполнения. Типы заданий Cron, требующих мониторинга Отсутствие уведомлений о статусе заданий Cron может не иметь сиюминутных последствий, но может помешать работе системы в долгосрочной перспективе. Вот некоторые из заданий Cron, которые обычно остаются незамеченными если не использовать эффективную службу мониторинга: Резервные копии Обновление SSL-сертификата Антивирусное сканирование Динамические обновления DNS Перезагрузка сервера Преимущества мониторинга статуса заданий Cron Помимо контроля за своевременным выполнение запланированных заданий Cron, службы мониторинга предоставляют следующие практические преимущества: Планирование заданий - можно запланировать любые задания доступные через планировщик Cron прямо из панели управления сервиса; Мгновенные оповещения - если какое-либо приложение или процесс задания занимает больше времени, чем ожидалось, то эти службы будут выдавать мгновенные оповещения. Metric Insights - вы можете отслеживать все метрики по заданиям и оптимизировать их выполнение. Теперь давайте рассмотрим некоторые облачные средства мониторинга Cron. 1. HealthChecks Простота и эффективность HealthCheck делают его одним из лучших вариантов для мониторинга заданий Cron. Она предоставляет еженедельные отчеты по триггерам оповещений, сбоям в выполнении запланированных задач, сбоям резервного копирования и многом другом. Еще одна впечатляющая вещь в HealthCheck заключается в том, что он предлагает уникальный URL для каждой задачи, для которой включен мониторинг. Вы можете легко проверять запросы на обслуживание по HTTP или отправлять сообщения по электронной почте. Применение HealthChecks для мониторинга cron уменьшит количество автоматических сбоев. Сервис располагает удобной панелью мониторинга с интерактивным обновлением, которая предоставляет подробные сведения обо всех предупреждениях или проверках. Можно также назначить имена или теги всем проверяемым службам, что в конечном итоге поможет легко распознать их при необходимости. Она поставляется с простой конфигурацией с параметрами "Grace Time" и "Period" для указания различных аспектов или состояния мониторинга. Он позволяет добавить подробное описание для каждого задания Cron. Для выполнения дальнейших действий можно добавить указатели и заметки. Кроме того, можно просмотреть историю отправленных или полученных сообщений ping. Другие функции включают в себя публичные значки состояния, поддержку выражений Cron и интеграцию с Slack, Email, WebHooks, Microsoft Teams и т.д. 2. Cronitor Cronitor поможет вам более удобно планировать задачи с помощью быстрых оповещений. Он работает с несколькими заданиями Cron, такими как запланированные события AWS, планировщик заданий Microsoft, планировщик Jenkins, Kubernetes Cron, Java Cron и многое другое. Мониторинг контрольного сигнала позволяет получить представление о состоянии конвейеров данных, фоновых заданий, демонов, сценариев, ETL-заданий и других. Его легко можно использовать для любого языка и на любой платформе. Сервис обладает гибкими настройками политик и правил оповещения. Cronitor также предлагает мониторинг времени безотказной работы для веб-сайта, API, S3 объектов Amazon (корзин) и т.д. 3. Cronhub Cronhub устраняет необходимость в написании любых кодов для планирования и контроля фоновых заданий. Вам просто нужно сконцентрироваться на своих приложениях и позволить им планировать ваши задачи. Вы получаете мгновенные предупреждения о всех аспектах мониторинга, как только появится отклонение от нормы в любом из запланированных задач. Поддерживается планирование заданий с использованием выражений Cron или временных интервалов. Для этого достаточно задать API или целевой URL-адрес, который будет выполняться в задании. Затем Cronhub отправляет HTTP-запрос на указанный API или целевой URL. Если расписание будет прервано по какой-либо причине, Cronhub немедленно отправит предупреждения через настроенные каналы, в число которых входит SMS, Slack, Email и другие. Помимо этого, Cronhub также помогает отслеживать информацию о запланированных заданиях, обеспечивает поддержку команды, доступ к журналу. Это в конечном итоге поможет вам найти лазейки в приложении вместе с заданиями в фоновом режиме. 4. Dead Man’s Snitch Еще один сервис, который на русский язык переводится довольно забавно "Стукач Мертвеца" Dead Man’s Snitch завоевал рынок, во время бума служб мониторинга планировщика Cron. Он больше ориентирован на задания вроде выставления счетов или резервного копирования, которые не были выполнены в соответствии установленным графикам. Dead Man's Snitch гарантирует, что разработчики и пользователи будут следить за работой Cron так, как они ожидали. С помощью этого сервиса можно контролировать Cron, Heroku Scheduler и другие планировщики. Для уведомления о сбоях в работе может использоваться любой HTTP клиент, например, cURL. cURL - это фрагмент, добавляемый как суффикс к концу строки Crontab. Он предлагает запрос к Dead Man 's Snitch, чтобы проверить, выполняется ли задание или выполняется ли оно должным образом или нет. Для различных заданий, вы можете изменить Snitch URL, чтобы знать результаты мониторинга для каждого из них по отдельности. Другой интересной особенностью является добавление к заданию функции "Полевой агент". Можно загрузить и установить его для улучшения результатов мониторинга вместе с метриками и записями данных. С его помощью можно проверить журналы ошибок заданий Cron, чтобы найти лучшее разрешение для них. Эти функции являются идеальным сочетанием для обеспечения лучшего отслеживания фоновых заданий. Его цены начинаются всего от 5 долларов в месяц для трех "доносчиков" и неограниченных членов команды. 5. CronAlarm CronAlarm - это универсальный концентратор, помогающий получить представление о надежности и производительности запланированных задач с минимальными сложностями. Лучшее в CronAlarm это поддержка каждого Cron задания с возможностью доступа к URL без особых хлопот. Обо всех фоновых заданиях приложений, будь то выполняющиеся слишком быстро или медленно, либо с опережением, или с отставанием, сообщается и пользователям. Существует несколько платформ интеграции для оповещения пользователей, включая электронную почту, Slack и webhooks. Необходимо предоставить CronAlarm информацию о расписаниях работы, таких как время запуска, продолжительность выполнения и т.д. Он назначает определенный ключ API различным заданиям. Чтобы начать работу со службой мониторинга CronAlarm, необходимо просто добавить ключ API или вызов в начале или конце URL. Вы также можете обратиться к CronAlarm чтобы получить более функциональный API, оснащенный интегрированными функциями для более эффективного решения проблем. 6. WebGazer Web Gazer помогает планировать задачи и выполнять мониторинг всех выбранных заданий Cron для отслеживания производительности. В Web Gazers не посылает ложные аварийные сигналы, так как инциденты проверяются в течение нескольких секунд перед отправкой предупреждения пользователю. Кроме того, Web Gazer обеспечивает квитирующий мониторинг (heartbeat monitoring), мониторинг SSL. Его план начинается с $19/месяц, а также доступна бесплатная версия со всем основным функционалом. Заключение За автоматизацией будущее. Планирование и мониторинг заданий Cron помогают эффективно выполнять задачи. В противном случае, как бы вы узнали, что выполняются ли запланированные операции подобающим образом или нет? Но к счастью, вышеуказанные решения, в конечном итоге, помогут вам оптимизировать задачи и устранить недочёты, мешающие работе пользователя.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59