По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Прочитайте материал про реактивное и упреждающее распределение достижимости в сетях. Есть много случаев, когда более эффективно или в соответствии с конкретными ограничениями политики для плоскости управления изучать информацию о достижимости и топологии с другой плоскости управления, а не с помощью механизмов, описанных до этого момента в этой серии статей. Вот некоторые примеры: Две организации должны соединить свои сети, но ни одна из них не хочет позволить другой контролировать политику и работу своих плоскостей управления; Крупная организация состоит из множества бизнес-единиц, каждая из которых имеет возможность управлять собственной внутренней сетью в зависимости от местных условий и требований приложений. Организация должна каким-то образом позволить двум плоскостям управления взаимодействовать при переходе от одной к другой. Причины, по которым одна плоскость управления может получать информацию о доступности от другой, почти безграничны. Учитывая это требование, многие сетевые устройства позволяют операторам перераспределять информацию между плоскостями управления. При перераспределении достижимости возникают две проблемы, связанные с плоскостью управления: как обрабатывать метрики и как предотвращать петли маршрутизации. Примечание. Перераспределение можно рассматривать как экспорт маршрутов из одного протокола в другой. На самом деле импорт/экспорт и перераспределение часто используются для обозначения одного и того же, либо разными поставщиками, либо даже в разных ситуациях одним и тем же поставщиком. Перераспределение и метрики Взаимосвязь между свойствами связи, политиками и метриками определяются каждым протоколом плоскости управления независимо от других протоколов. Фактически, более описательная или более полезная метрическая система - это то, что иногда привлекает операторов к определенному протоколу плоскости управления. На рисунке 12 показаны два участка сети, в которых работают две разные управляющие плоскости, каждая из которых использует свой метод расчета метрик связей. Протоколы X и Y в этой сети были настроены с использованием двух разных систем для назначения показателей. При развертывании протокола X администратор разделил 1000 на скорость соединения в гигабитах. При развертывании протокола Y администратор создал "таблицу показателей" на основе наилучшего предположения о каналах с самой высокой и самой низкой скоростью, которые они могут иметь в течение следующих 10-15 лет, и назначил метрики для различных скоростей каналов в этой таблице. Результат, как показывает рисунок, несовместимые показатели: 10G каналы в протоколе X имеют метрику 100, в то время как в протоколе Y они имеют метрику 20. 100G-каналы как в протоколе X, так и в протоколе Y имеют метрику 10. Предполагая, что более низкая метрика предпочтительна, если метрики добавлены, канал [B, C, F] будет считаться более желательным путем, чем канал [B, D, G]. Однако, если учитывать пропускную способность, оба канала будут считаться одинаково желательными. Если между этими двумя протоколами настроено перераспределение, как следует обрабатывать эти метрики? Есть три общих решения этой проблемы. Администратор может назначить метрику в каждой точке перераспределения, которая передается как часть внутренней метрики протокола. Например, администратор может назначить метрику 5 для пункта назначения E на маршрутизаторе C при перераспределении из протокола X в Y. Этот пункт назначения, E, вводится в протокол Y с метрикой 5 маршрутизатором C. На маршрутизаторе F метрика для E будет от 25 для C. В G стоимость достижения E будет 35 по пути [F, C]. Желательность использования любой конкретной точки выхода для любого конкретного пункта назначения выбирается оператором при назначении этих ручных метрик. Метрика "другого" протокола может быть принята как часть внутренней метрики протокола. Это не работает в случае, когда один протокол имеет более широкий диапазон доступных метрик, чем другой. Например, если протокол Y имеет максимальную метрику 63, метрики 10G из протокола X будут "выше максимума"; ситуация, которая вряд ли будет оптимальной. При отсутствии такого ограничения маршрутизатор C внедрит маршрут к E со стоимостью 100 в протокол Y. Стоимость достижения E на маршрутизаторе F составит 110; стоимость в G будет от 130 до [F, C]. Примечание. Здесь вы можете увидеть компромисс между состоянием плоскости управления и оптимальным использованием сети, это еще один пример компромисса сложности при проектировании реальных протоколов. Перенос внешней метрики в отдельное поле добавляет состояние плоскости управления, но позволяет более оптимально управлять трафиком через сеть. Назначение или использование внешней метрики снижает состояние плоскости управления, но за счет возможности оптимизации потока трафика. Внешняя метрика может быть перенесена в отдельное поле, поэтому каждое сетевое устройство может отдельно определять лучший путь к каждому внешнему адресату. Это третье решение является наиболее широко используемым, поскольку оно обеспечивает наилучшую возможность управления трафиком между двумя сетями. В этом решении C вводит достижимость для E с внешней стоимостью 100. В F есть две метрики в объявлении, описывающие достижимость для E; внутренняя метрика для достижения точки перераспределения (или выхода) - 20, а метрика для достижения точки E во внешней сети - 100. В G внутренняя метрика для достижения точки выхода - 30, а внешняя метрика - 100. Как реализация будет использовать оба этих показателя? Следует ли протоколу выбирать ближайшую точку выхода или, скорее, самую низкую внутреннюю метрику? Это позволит оптимизировать использование локальной сети и потенциально деоптимизировать использование сетевых ресурсов во внешней сети. Должен ли протокол выбирать точку выхода, ближайшую к внешнему назначению, или, скорее, самую низкую внешнюю метрику? Это позволит оптимизировать сетевые ресурсы во внешней сети, потенциально за счет деоптимизации использования сетевых ресурсов в локальной сети. Или протоколу следует попытаться каким-то образом объединить эти две метрики, чтобы максимально оптимизировать использование ресурсов в обеих сетях? Некоторые протоколы предпочитают всегда оптимизировать локальные или внешние ресурсы, в то время как другие предоставляют операторам возможность конфигурации. Например, протокол может позволять переносить внешние метрики в виде метрик разных типов, при этом один тип считается большим, чем любая внутренняя метрика (следовательно, сначала предпочтение отдается самой низкой внутренней метрике и использование внешней метрики в качестве средства разрешения конфликтов), а другой тип - это когда внутренние и внешние метрики считаются эквивалентными (следовательно, добавляются внутренние и внешние метрики для принятия решения о пути). Перераспределение и петли маршрутизации В приведенном выше обсуждении вы могли заметить, что места назначения, перераспределенные с одного протокола на другой, всегда выглядят так, как будто они подключены к перераспределяющему маршрутизатору. По сути, перераспределение действует как форма резюмирования (что означает, что удаляется информация о топологии, а не информация о достижимости), как описано ранее в этой серии статей. Хотя этот момент не является критическим для показателей перераспределения, важно учитывать способность плоскости управления выбирать оптимальный путь. В некоторых конкретных случаях деоптимизация может привести к тому, что плоскость управления не сможет выбрать пути без петель. Рисунок 13 демонстрирует это. Чтобы построить петлю маршрутизации в этой сети: Маршрут к хосту A перераспределяется от протокола X к Y с вручную настроенной метрикой 1. Маршрутизатор E предпочитает маршрут через C с общей метрикой (внутренней и внешней) 2. Маршрутизатор D предпочитает маршрут через E с общей метрикой 3. Маршрутизатор D перераспределяет маршрут к хосту A в протокол X с существующей метрикой 3. Маршрутизатор B имеет два маршрута к A: один со стоимостью 10 (напрямую) и один с метрикой от 4 до D. Маршрутизатор B выбирает путь через D, создавая петлю маршрутизации. И так далее (цикл будет продолжаться, пока каждый протокол не достигнет своей максимальной метрики). Этот пример немного растянут для создания цикла маршрутизации в тривиальной сети, но все циклы маршрутизации, вызванные перераспределением, схожи по своей структуре. В этом примере важно, что была потеряна не только топологическая информация (маршрут к A был суммирован, что, с точки зрения E, было непосредственно связано с C), но и метрическая информация (исходный маршрут со стоимостью 11 перераспределяется в протокол Y со стоимостью 1 в C). Существует ряд общих механизмов, используемых для предотвращения формирования этой петли маршрутизации. Протокол маршрутизации всегда может предпочесть внутренние маршруты внешним. В этом случае, если B всегда предпочитает внутренний маршрут A внешнему пути через D, петля маршрутизации не образуется. Многие протоколы маршрутизации будут использовать предпочтение упорядочивания при установке маршрутов в локальную таблицу маршрутизации (или базу информации о маршрутизации, RIB), чтобы всегда отдавать предпочтение внутренним маршрутам над внешними. Причина этого предпочтения состоит в том, чтобы предотвратить образование петель маршрутизации этого типа. Фильтры можно настроить так, чтобы отдельные пункты назначения не перераспределялись дважды. В этой сети маршрутизатор D может быть настроен для предотвращения перераспределения любого внешнего маршрута, полученного в протоколе Y, в протокол X. В ситуации, когда есть только два протокола (или сети) с перераспределенной между ними информацией плоскости управления, это может быть простым решением. В случаях, когда фильтры необходимо настраивать для каждого пункта назначения, управление фильтрами может стать трудоемким. Ошибки в настройке этих фильтров могут либо привести к тому, что некоторые пункты назначения станут недоступными (маршрутизация черных дыр), либо приведет к образованию петли, потенциально вызывающей сбой в плоскости управления. Маршруты могут быть помечены при перераспределении, а затем отфильтрованы на основе этих тегов в других точках перераспределения. Например, когда маршрут к A перераспределяется в протокол Y в C, маршрут может быть административно помечен некоторым номером, например, 100, чтобы маршрут можно было легко идентифицировать. На маршрутизаторе D можно настроить фильтр для блокировки любого маршрута, помеченного тегом 100, предотвращая образование петли маршрутизации. Многие протоколы позволяют маршруту нести административный тег (иногда называемый сообществом или другим подобным именем), а затем фильтровать маршруты на основе этого тега.
img
Теперь вы знаете, как работают глобальные префиксы и подсети, а как насчет ID интерфейса? Мы еще не говорили о назначении IPv6-адресов нашим хостам. Назначение адресов хостам почти то же самое, что и для IPv4: Адреса должны быть уникальными для каждого хост; Вы не можете использовать префиксный адрес в качестве адреса хоста. Ранее мы писали про основы работы протокола IPv6 (Internet Protocol version 6). Вы можете настроить IPv6-адрес вручную вместе со шлюзом по умолчанию, DNS-сервером и т. д. или ваши хосты могут автоматически получить IPv6-адрес либо через DHCP, либо через что-то новое, называемое SLAAC (Stateless Address Autoconfiguration). Вот пример IPv6 адресов, которые вы могли бы выбрать для топологии, которая показана выше: Для интерфейсов роутера предлагаю использовать наименьшие числа, так как они легко запоминаются. В этом примере показан уникальный global unicast IPv6-адрес для каждого устройства. Это все, что касается global unicast адресов, так же мы должны рассмотреть уникальные локальные одноадресные адреса. Уникальные локальные адреса работают так же, как и частные адреса IPv4. Вы можете использовать эти адреса в своей собственной сети, если не собираетесь подключаться к Интернету или планируете использовать IPv6 NAT. Преимущество уникальных локальных адресов заключается в том, что вам не нужно регистрироваться в специализированном органе, чтобы получить дополнительные адреса. Вы можете распознать эти адреса, потому что все они начинаются с FD в шестнадцатеричном формате. Есть еще несколько правил, которым вы должны следовать, если хотите использовать уникальные локальные адреса: Убедитесь, что FD - это первые два шестнадцатеричных символ; Вам нужно составить 40-битный глобальный ID, вы можете выбрать все, что вам нравится; Добавьте 40-битный глобальный ID после "FD", чтобы создать 48-битный префикс; Следующие 16 бит должны использоваться для подсетей Это оставляет вам последние 64 бита для использования идентификатора интерфейса. Вот как выглядит уникальный локальный адрес: Это дает нам уникальный локальный адрес, который мы можем использовать в наших собственных сетях. Подсети global unicast адресов или уникальных локальных адресов точно такие же, за исключением того, что на этот раз мы сами создаем префикс вместо того, чтобы провайдер назначил нам глобальный префикс. Глобальный ID может быть любым, что вам нравится, с 40 битами у вас будет 10 шестнадцатеричных символов для использования. Вы можете выбрать что-то вроде 00 0000 0001, поэтому, когда вы поставите перед ним "FD", у вас будет префикс FD00:0000:0001::/48. Вы можете удалить некоторые нули и сделать этот префикс короче, он будет выглядеть так: FD00:0:1:: / 48 Теперь вы можете добавить различные значения за префиксом, чтобы сделать уникальные подсети: FD00:0:1:0000::/6; FD00:0:1:0001::/6; FD00:0:1:0002::/6; FD00:0:1:0003::/6; FD00:0:1:0004::/6; FD00:0:1:0005::/6; FD00:0:1:0006::/6; FD00:0:1:0007::/6; FD00:0:1:0008::/6; FD00:0:1:0009::/6; FD00:0:1:000A::/6; FD00:0:1:000B::/6; FD00:0:1:000C::/6; FD00:0:1:000D::/6; FD00:0:1:000E::/6; FD00:0:1:000F::/6; FD00:0:1:0010::/6; FD00:0:1:0011::/6; FD00:0:1:0012::/6; FD00:0:1:0013::/6; FD00:0:1:0014::/6; И так далее. Когда вы выполняете лабораторные работы, можно использовать простой глобальный ID. В конечном итоге вы получите короткий и простой в запоминании префикс. Для производственных сетей лучше использовать глобальный ID, чтобы он был действительно уникальным. Возможно, однажды вы захотите подключить свою сеть к другой сети, или, возможно, вам придется объединить сети. Когда обе сети имеют один и тот же глобальный идентификатор, вам придется изменить IPv6-адрес для объединённой сети. В случае, если глобальные идентификаторы отличаются, Вы можете просто объединить их без каких-либо проблем. Настройка на маршрутизаторе В оставшейся части этой статьи мы рассмотрим, как можно настроить IPv6 на наших роутерах. Если вы хотите настроить IPv6 адрес на роутере у вас есть два варианта: Вручную настроить 128-битный IPv6-адрес; Использовать EUI-64; Сначала я покажу вам, как вручную настроить IPv6-адрес, а затем объясню, что такое EUI-64. Вот что необходимо выполнить: OFF1(config)#interface fastEthernet 0/0 OFF1(config-if)#ipv6 address 2001:1234:5678:abcd::1/64 Вам нужно использовать команду ipv6 address, а затем вы можете ввести адрес IPv6. Префикс, который я использую, - это 2001:1234:5678:abcd, и этот роутер будет иметь в качестве своего адреса "хоста" "1". Если хотите Вы также можете ввести полный IPv6-адрес: OFF1(config)#interface fastEthernet 0/0 OFF1(config-if)#ipv6 address 2001:1234:5678:abcd:0000:0000:0000:0001/64 Эта команда будет иметь точно такой же результат, что и команда, введенная ранее. Мы можем проверить подсеть и IPv6-адрес следующим образом: OFF1#show ipv6 interface fa0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::C000:18FF:FE5C:0 No Virtual link-local address(es): Global unicast address(es): 2001:1234:5678:ABCD::1, subnet is 2001:1234:5678:ABCD::/64 Данный вывод информации отображает global unicast адрес и нашу подсеть. Есть еще одна важная вещь, когда мы настраиваем IPv6 на роутере. По умолчанию роутер не будет пересылать никакие пакеты IPv6 и не будет создавать таблицу маршрутизации. Чтобы включить "обработку" пакетов IPv6, нам нужно включить его: OFF1(config)#ipv6 unicast-routing Большинство команд "ip" будут работать, просто попробуйте "ipv6" вместо этого и посмотрите, что он делает: OFF1#show ipv6 interface brief FastEthernet0/0 [up/up] FE80::C000:18FF:FE5C:0 2001:1234:5678:ABCD::1 OFF1#show ipv6 route connected IPv6 Routing Table - 3 entries Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP U - Per-user Static route, M - MIPv6 I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2 ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2 D - EIGRP, EX - EIGRP external C 2001:1234:5678:ABCD::/64 [0/0] via ::, FastEthernet0/0 Теперь вы знаете, как настроить IPv6-адрес вручную и как его проверить. После, почитайте о том, как настроить IPv6 с EUI-64 на Cisco.
img
Огромный и “кровавый" энтерпрайз врывается в нашу IT - базу знаний. Говорить будем о продукте (точнее продуктах) американской компании Genesys. Эти ребята делают ПО для контактных центров, так сказать, высшего разряда - банки, государство и крупнейшие предприятия. Хотя сам Genesys подчеркивает, что решение может помочь и малому бизнесу, но, честно говоря, автор статьи не на своем веку не встречал инсталляций Genesys в SMB сегменте (по крайней мере в России). /p> Genesys постоянно фигурирует в сводке компании Gartner, в 2018 году ребятам даже удалось стать лидером в “магическом квадранте". Давайте разбираться. Что умеет контакт - центр на базе Genesys? Вендор позиционирует свой продукт в четырех плоскостях. Разберемся по порядку. Улучшение клиентского сервиса Первая часть профита. Genesys обеспечит умную маршрутизацию на агентов (умнее чем даже модный prescission routing у Cisco), которая маршрутизирует на агентов не только на базе привычных скиллов или атрибутов, на и подключается искусственный интеллект и технологии машинного обучения. Клиент попадет именно на того агента, который сможет решить его вопрос. Так сказать, дата - дривен подход в маршрутизации клиентских обращений - и это не только голос. Конечно Genesys умеет в модный омниченнел. Помимо фронтовой части КЦ (звонки и разговоры с агентами), Genesys обеспечит вас инструментами WFO, которые позволяет более эффективно планировать смены агентов, чтобы нагрузка на КЦ была обеспечена в рамках требуемого service level. Что касается так называемых “порталов самообслуживания" - у ребят есть решение. Создавать сервисы, в рамках которых при обращении в КЦ клиент сам сможет решить свою проблему довольно просто. Это основные пункты. Но далеко не все. Погнали дальше. Маркетинг Омниканальный возможности вендора (чаты, мессенджеры, то есть не только голос) обеспечат точечную доставку ваших маркетинговых кампаний до клиентов. Вы уверены, что 20ти летний клиент вашего бизнеса хочет принять звонок? Может быть он ждет сообщения в мессенджер? Продажи Инструментов много. Но самый популярный - это конечно исходящий обзвон (дайлер). Genesys OCS (outbound contact server) вместе с интеграционными возможностями и гибкой кастомизацией обзвона (днем звоним на мобильный, вечером на домашний в зависимости от часового пояса, как вам?), с возможностью обзвона в режимах ручного набор, превью (preview, тут агенту выгружается список контактов и он сам решает, кому звонить), progressive (тоже самое что и превью, только оператор не выбирает) или predictive (дайлер угадывает доступность абонента) - изи. Конкуренты Основные конкуренты это Cisco и Avaya. У Cisco можно выделить 2 продукта (на оба у нас есть статьи, ознакомьтесь нажав ниже): Cisco UCCX - конкурентом, конечно, можно назвать с натяжкой. Ибо это контакт - цент экспресс; Cisco UCCE - тяжеловесная энтерпрайзная машина для контакт - центров. Полноценный конкурент; И решения Avaya Aura. Мы не будем делиться субъективными мнения, кто круче и у кого “очереди больше". Посмотрите анализ гартнера ,если хотите понимать динамику во временном разрезе. Примерная архитектура От инсталляции к инсталляции. И это важно. Но мы очень постарались в общих чертах с детализацией роли серверов нарисовать, как работает КЦ от Genesys. Гляньте на картинку. Мы очень верхнеуровнево постарались показать, как работает обработка цифровых и голосовых каналово в Genesys: Теперь давайте поговорим компоненты: Клиент - хммм. Кто же это может быть? Голос - голосовой обращение клиента в КЦ (звонок); Чат - текстовое сообщение через мессенджер, чат на сайте или мобильном приложении, например; SIP сервер - это интерфейс между SIP (телефония) и компонентами Genesys. Принимает SIP запросы и транслирует их дальше на понятный остальным компонентам язык; GVP - он же Genesys Voice Platform. Гибкая платформа создания приложений для обработки вызовов и работы с RTP потоками. У Cisco есть CVP, а у Genesys GVP, вай нот?) ; ASR/TTS - сердце синтеза и распознавания речи (если мы делаем голосовые сервисы). Genesys активно топит за Nuance, но не переживайте - там живет MRCP. Можно и ЦРТ подключить, и что угодно; GMS - Genesys Mobile Services. Расширяет функции REST API для интеграции с внешними приложениями. Например, с API от Telegram (мессенджер); Interaction сервер - часть PureEngage Digital (eServices). То есть это не голосовые, а цифровые коммуникации. Сервер помогает выполнить обмен сообщениями и выполнять контроль воркфлоу обработки, как было нарисовано в IRD (Interaction Routing Designer). Кстати, IRD это конструктор скриптов маршрутизации. Об этом в следующих статьях; ORS - важный. Очень важный. Его зовут Orchestration Server и он помогает в маршрутизации запросов. ORS интегрируется с другими компонентами, и по факту, просто выполняет на себе SCXML скрипты (стратегии), которые вы сможете сделать в Composer (инструмент для генерации стратегий маршрутизации); Conversation Manager - сам по себе конверсейшн менеджер, это некое приложение, которое обеспечивает согласованную клиентскую коммуникацию. Давайте про его модули поконкретнее: Context Services - помогает определить клиента. Кто он? Чего хочет? Где он находится в процессе всего пути клиентского обращения?; Genesys Rules - набор каких то правил. Например, если мы знаем, что этот клиент интересуется кредитами, часто звонит и исправно платит свой текущий кредит, то в качестве опций, предлагаемых ему, будет предложено воспользоваться приложениям для самообслуживания, например. Условно говоря, этот модуль живет на принятии решений вида if..then; Journey Timeline - классная штука. Визуальная шкала того, какой путь прошел ваш клиент, какие пункты IVR послушал, какие порталы самообслуживания “поюзал" и так далее. CJM (customer journey map), так сказать; Pulse коллектор - компонент, который напрямую коннектится к Stat серверу (сервер сбора статистики) и забирает с него статистику по объектам КЦ; Data Depot - берет данные из Context Services, чтобы передать в статистику информацию по клиенту; Pulse - компонент отчетности и анализа статистики КЦ; Вот так. Это примерная архитектура контактного центра на базе Genesys. Итоги КЦ на базе Genesys - отличный и конкурентный вариант. Продукт имеет мощных конкурентов, борьба с которыми обеспечивает его динамичное развитие. Набор продуктов Genesys создан для того, чтобы прогреть лояльность ваших клиентов то температуры кипения, увеличить продажи и улучшить маркетинговые кампании.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59