По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В предыдущей статье мы рассмотрели, как можно использовать файлы для того, чтобы не засорять код Terraform. В данной статье мы посмотрим, как можно использовать динамические файлы (шаблоны) для написания кода Терраформ. Что такое динамический файл? В данном контексте это файл, в который мы посылаем всякие переменные и файл генерируется в зависимости от наших переменных. Когда в коде мы используем конструкцию user_data = file (), по сути мы делаем копировать-вставить из файла, который мы указываем в качестве аргумента функции. Теперь мы будем использовать другую функцию ее синтаксис немного отличается: user_data = templetfile(). Данная функция принимает два параметра. Первый параметр имя файла. Далее ставится знак , и затем фигурные скобки {}, в которых мы указываем переменные, которые мы хотим отправить в файл шаблона. Рекомендую для читаемости кода и удобства работы файл, в который будут отправляться переменные переименовывать в имя_файла.tpl. Обще принятое расширение для файла-шаблона. В итоге мы получаем генерированный файл с отправленными в него параметрами. Выглядит это следующем образом. Допустим мы хотим отправить в файл несколько переменных например: f_name = “Olya” , l_name = “Vasilkova”, names = [“Masha”, ”Vasya”, ”Rik”, ”Petya”, “Oleg”] Как видите мы засылаем переменные в файл, мы можем одну переменную или кучу целую отправить, не обязательно что данные переменные будут использоваться. Переменные разные, одиночные мы взяли 2 переменные и одну переменную где много значений. Можно сказать, что массив данных. В предыдущей статье мы создавали html страничку, мы продолжим ее создавать, только с использованием переменных. Берем скрипт из предыдущего урока и начинаем править. Переименовываем файл - cp user_data.sh user_data.sh.tpl. Следующим шагом правка непосредственно самого скрипта с использованием html разметке. Отправляем переменные в файл. Вместо переменных вставятся значение переменных. Далее мы вставляем цикл, чтобы пройтись по значениям переменной names. Получаем в цикле, что x будет равна каждому значению в переменной names. Обратите внимание, что конструкция %{ for x in names ~} и % { endfor~} печататься не будут! Печататься будет то, что находится в цикле Hello to ${x} from ${f_name}. Т.е вот этим скриптом мы генерируем user_data в коде терраформ. Следовательно, наш файл index.html будет с кучей строчек. Теперь нам необходимо, это все запустить. Переходим в командной строке в директорию Lesson-4. И проводим первичную инициализацию terraform init. Результатом успешной инициализации будет следующий вывод команды на экран. Далее даем команду на проверку кода терраформ в том числе убедится, что не создастся ничего лишнего. terraform apply, подтверждаем выполнение команды словом yes. А далее мы можем видеть, как система начинает создание ресурсов. После исполнения мы можем в консоли AWS увидеть созданный ресурс. Обратите внимание, что при создании ресурса user_data шифруется. Это хорошо видно в момент вывода terraform apply. Когда инстанс в консоли AWS запустился, мы можем посмотреть, что у нас содержится в user_data. Для этого необходимо по instance щелкнуть правой кнопкой мыши и вызвать меню. В данном меню выбираем user_data. Появляется следующее окно. Как мы видим на картинке, часть нашего скрипта. Если прокрутить, то он будет там весь со всему принимаемыми значениями. Это функция будет достаточно полезна для контроля переменных, чтобы посмотреть какие данные попали в переменные. Следовательно, на выходе мы получаем в веб браузере следующего вида веб страничку. У нас получилось с помощью переменных и шаблона сгенерировать html файл, то есть наш файл динамичный. Далее уже дело техники подставить его в веб-сервер для отображения и запуска в инстансе AWS. Напоминаю, что IP адрес нашего сервера в AWS можно посмотреть в двух местах. А затем обратиться к веб странице по протоколу http с использованием данного IP адреса в любом браузере. Немного еще функционала - можно не поднимая инстанса посмотреть какие данные получим на выходе. Для этого используем функционал terraform console. Берем часть терраформ файла. Выравниваем в одну строку: templatefile("user_data.sh.tpl", { f_name = "Olya",l_name = "Vasilkova", names = ["Masha", "Vasya", "Rik", "Petya", "Oleg"] }) и вставляем. Как вы видите получаем те данные которые передаются на инстанс в AWS.
img
Пока что это обсуждение предполагает, что сетевые устройства будут учитывать отметки, обнаруженные в IP-пакете. Конечно, это верно в отношении частных сетей и арендованных сетей, где условия доверия были согласованы с поставщиком услуг. Но что происходит в глобальном Интернете? Соблюдают ли сетевые устройства, обслуживающие общедоступный Интернет-трафик, и соблюдают ли значения DSCP, а также устанавливают ли приоритет одного трафика над другим во время перегрузки? С точки зрения потребителей Интернета, ответ отрицательный. Общедоступный Интернет - лучший транспорт. Нет никаких гарантий ровной доставки трафика, не говоря уже о расстановке приоритетов. Даже в этом случае глобальный Интернет все чаще используется как глобальный транспорт для трафика, передаваемого между частными объектами. Дешевые услуги широкополосного доступа в Интернет иногда предлагают большую пропускную способность по более низкой цене, чем частные каналы глобальной сети, арендованные у поставщика услуг. Компромисс этой более низкой стоимости - более низкий уровень обслуживания, часто существенно более низкий. Дешевые каналы Интернета дешевы, потому что они не предлагают гарантий уровня обслуживания, по крайней мере, недостаточно значимых, чтобы вселить уверенность в своевременной доставке трафика (если вообще). Хотя можно отмечать трафик, предназначенный для Интернета, провайдер не обращает внимания на эти отметки. Когда Интернет используется в качестве транспорта WAN, как тогда можно эффективно применять политику QoS к трафику? Создание качественного сервиса через общедоступный Интернет требует переосмысления схем приоритизации QoS. Для оператора частной сети публичный интернет-это черный ящик. Частный оператор не имеет никакого контроля над общедоступными маршрутизаторами между краями частной глобальной сети. Частный оператор не может установить приоритет определенного трафика над другим трафиком на перегруженном общедоступном интернет-канале без контроля над промежуточным общедоступным интернет-маршрутизатором. Решение для обеспечения качества обслуживания через общедоступный Интернет является многосторонним: Контроль над трафиком происходит на границе частной сети, прежде чем трафик попадет в черный ящик общедоступного Интернета. Это последняя точка, в которой оператор частной сети имеет контроль над устройством. Политика QoS обеспечивается в первую очередь путем выбора пути и, во вторую очередь, путем управления перегрузкой. В понятие выбора пути неявно подразумевается наличие более одного пути для выбора. В развивающейся модели программно-определяемой глобальной сети (SD-WAN) два или более канала глобальной сети рассматриваются как пул полосы пропускания. В пуле индивидуальный канал, используемый для передачи трафика в любой момент времени, определяется на момент за моментом, поскольку сетевые устройства на границе пула выполняют тесты качества по каждому доступному каналу или пути. В зависимости от характеристик пути в любой момент времени трафик может отправляться по тому или иному пути. Какой трафик отправляется по какому пути? SD-WAN предлагает детализированные возможности классификации трафика за пределами управляемых человеком четырех-восьми классов, определяемых метками DSCP, наложенными на байт ToS. Политика выбора пути SD-WAN может быть определена на основе каждого приложения с учетом нюансов принимаемых решений о пересылке. Это отличается от идеи маркировки как можно ближе к источнику, а затем принятия решений о пересылке во время перегрузки на основе метки. Вместо этого SD-WAN сравнивает характеристики пути в реальном времени с определенными политикой потребностями приложений, классифицированных в реальном времени, а затем принимает решение о выборе пути в реальном времени. Результатом должно быть взаимодействие пользователя с приложением, аналогичное полностью находящейся в собственности частной глобальной сети со схемой приоритизации QoS, управляющей перегрузкой. Однако механизмы, используемые для достижения подобного результата, существенно отличаются. Функциональность SD-WAN зависит от способности обнаруживать и быстро перенаправлять потоки трафика вокруг проблемы, в отличие от управления проблемой перегрузки после ее возникновения. Технологии SD-WAN не заменяют QoS; скорее они предоставляют возможность "поверх" для ситуаций, когда QoS не поддерживается в базовой сети.
img
В последние годы рынок программного обеспечения прогрессирует ударными темпами. Чтобы удержаться на плаву, компании-разработчики программного обеспечения постоянно разрабатывают новые решения и совершенствуют уже существующее программное обеспечение. И если в первом случае анализируются желания, озвучиваемые пользователями, то во втором более эффективным методом сбора данных оказывается телеметрия. Что же это такое? Говоря по-простому, сетевая телеметрия — это процесс автоматизированного сбора данных, их накопление и передача для дальнейшего анализа. Если говорить о программном обеспечении, то анализ проводится разработчиками софта с целью оптимизации существующих программ, либо разработки и внедрения новых решений. Телеметрия в сети осуществляется посредством сбора данных с использованием сетевого протокола NetFlow или его аналогов. Зачем же нужен NetFlow? Сетевой протокол NetFlow был разработан в конце прошлого века компанией Cisco. Изначально он использовался как программа-распределитель пакетов данных для оптимизации работы маршрутизаторов, однако с течением времени она была заменена на более эффективную программу. Тем не менее, такой функционал, как сбор полезной статистики по использованию сетевого трафика и поныне оставляет Netflow актуальным. Правда, специализация этого протокола уже не соответствует исходной. Тем не менее, Netflow обладает функционалом, который невозможно реализовать, применяя альтернативные сетевые технологии. Система постоянного наблюдения за работой сетевых приложений и действиями пользователей; Сбор и учет информации об использовании сетевого трафика; Анализ и планирование развития сети; Распределение и управление сетевым трафиком; Изучение вопросов сетевой безопасности; Хранение собранных посредством телеметрии данных и их итоговый анализ; Хотя уже существуют программные решения, обладающие схожим функционалом, решение от компании Cisco до сих пор остается одним из лучших в этой сфере. Кстати, теперь это решение называется Cisco Stealthwatch и на 95% обладает функционалом для решения исключительно задач, связанных с информационной безопасностью. Отметим, что технологию сбора данных посредством NetFlow поддерживают не все роутеры или коммутаторы. Если Ваше устройство имеет поддержку данного протокола, то оно будет замерять проходящий трафик и передавать собранные данные в NetFlow-коллектор для последующей обработки. Передача будет осуществляться в формате датаграмм протокола UDP или пакетов протокола SCTP, поэтому на скорость работы интернета существенным образом это не повлияет. В настоящее время решения NetFlow (как и многих других приложений) подразделяются на три типа: Базовые технологии. Отличаются низкой ценой и довольно скудным функционалом анализа сетевого трафика. Тем не менее, для большинства пользователей или же для изучения технологии этого вполне достаточно «Продвинутые» корпоративные варианты. Здесь базовый функционал дополнен более широким набором инструментов для предоставления расширенной отчетности анализа данных. Также эти решения содержат готовые модели оптимизации для разных сетевых устройств. «Флагманские» корпоративные решения. Отличаются наивысшей ценой, однако при этом и наиболее широким функционалом, а также позволяют осуществлять мониторинг информационной безопасности в крупных организациях. «А как же быть с приватностью? Ведь сбор данных ставит под угрозу частную жизнь пользователей, тайну переписки, личные сообщения и прочее» - спросит беспокойный читатель. Согласно политике приватности компании Cisco, персональные данные пользователей остаются в полной безопасности. Посредством телеметрии NetFlow анализируется исключительно передача сетевого трафика, не угрожая приватности пользователей. Примеры решений Также приведем несколько самых популярных сетевых анализаторов, работающих под протоколом NetFlow: Solarwinds NetFlow Traffic Analyzer – мощный инструмент для анализа динамики трафика в сети. Программа осуществляет сбор, накопление и анализ данных, выводя их в удобном для пользователя формате. При этом можно проанализировать поведение трафика за определенные временные промежутки. Для ознакомления на сайте производителя доступна бесплатная 30-дневная версия Flowmon – программа, предоставляющая комплекс инструментов для изучения пропускной способности сети, нагрузки на сеть в определенные периоды времени, а также обеспечения безопасности сети от DDOS-атак PRTG Network Monitor - универсальное решение для сбора, хранения и обработки данных о поведении сети. В отличие от других подобных программ, данный инструмент работает на основе сенсоров – логических единиц, отвечающих за сбор данных по определенным аспектам изучаемого устройства. ManageEngine NetFlow Analyzer – схожая с остальными по функционалу программа. Её выделяют из ряда других такие возможности, как гибкая настройка аналитики, а так же возможность мониторить поведение сети из любого места, благодаря приложению для телефона. Как можно заметить, все вышеуказанные программы не только обладают схожим базовым функционалом, но и конкурируют между собой, продумывая и внедряя новые технические решения. Выбор, какой из нескольких десятков программ начать пользоваться – целиком и полностью дело конечного пользователя.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59